Antriebskonzepte für SIMATIC MICRO-DRIVE

ebmpapst

Produktkatalog 2020-11

the engineer's choice

Über ebm-papst

ebm-papst ist Technologieführer für Luft- und Antriebstechnik und in vielen Branchen gefragter Engineering-Partner. Mit rund 20 000 verschiedenen Produkten bieten wir für praktisch jede Anforderung die passende Lösung. Dabei stellen wir seit jeher höchste Ansprüche an Ökonomie und Ökologie.

Als konsequente Weiterentwicklung unserer hocheffizienten GreenTech EC-Technologie sehen wir in der industriellen Digitalisierung die größten Zukunftschancen für unsere Kunden. Mit GreenIntelligence bietet ebm-papst schon heute intelligent vernetzte Komplettlösungen, die weltweit einzigartig sind und unseren Kunden den entscheidenden Vorsprung sichern.

the engineer's choice

Sechs Gründe, die uns zu Ihrem idealen Partner machen:

Unsere Systemkompetenz.

Natürlich wollen Sie für jedes Projekt die beste Lösung. Voraussetzung dafür ist, dass man die luft- und antriebstechnischen Zusammenhänge als Ganzes betrachtet. Genau das tun wir: mit maßstabsetzender **Motortechnik**, hoch entwickelter **Elektronik** und **aerodynamisch** optimierten Formen – alles aus einer Hand und perfekt aufeinander abgestimmt. Diese Systemlösungen setzen weltweit einzigartige Synergien frei. Und vor allem: Sie nehmen Ihnen viel Arbeit ab. Damit Sie sich ganz auf Ihre Kernkompetenz konzentrieren können.

Der ebm-papst Erfindergeist.

Neben unserer großen Produktpalette sind wir natürlich auch jederzeit in der Lage, für Sie maßgeschneiderte Lösungen zu entwickeln. An unseren drei deutschen Standorten Mulfingen, Landshut und St. Georgen steht uns dafür ein breit aufgestelltes Team von 600 Ingenieuren und Technikern zur Verfügung. Sprechen Sie uns einfach auf Ihr aktuelles Projekt an.

Unser Technologievorsprung.

Wir sind nicht nur Pionier und Vorreiter bei der Entwicklung der hocheffizienten EC-Technik, wir haben auch die Chancen der Digitalisierung frühzeitig erkannt. So können wir heute Lösungen bieten, die höchste Energieeffizienz mit den Vorteilen von IoT und digitaler Vernetzung verbinden.

Persönliche Nähe zu unseren Kunden.

Zu ebm-papst gehören weltweit 29 Produktionsstätten (u. a. in Deutschland, China und den USA) sowie 48 Vertriebsstandorte, die jeweils über ein dichtes Netz an Repräsentanten verfügen. Damit haben Sie immer einen Ansprechpartner vor Ort, der Ihre Sprache spricht und Ihren Markt kennt.

Unser Qualitätsanspruch.

Selbstverständlich können Sie sich bei unseren Produkten auf höchste Qualitätsstandards verlassen. Denn wir betreiben ein kompromissloses Qualitätsmanagement in jedem Prozessschritt. Das bestätigt unter anderem unsere Zertifizierung nach den internationalen Normen DIN EN ISO 9001, TS-Konformitätserklärung und DIN EN ISO 14001.

Gelebte Nachhaltigkeit.

Verantwortung für die Umwelt, für unsere Mitarbeiter und für die Gesellschaft zu übernehmen, ist fester Bestandteil unserer Unternehmensphilosophie. Deshalb entwickeln wir Produkte, die auf größtmögliche Umweltverträglichkeit hin konzipiert und besonders ressourcenschonend produziert werden. Wir fördern das Umweltbewusstsein schon bei unserem Nachwuchs und engagieren uns in den Bereichen Sport, Kultur und Bildung. Das macht uns zu einem besseren Partner.

Antriebskonzepte für SIMATIC MICRO-DRIVE

	Seite		Seite
Informationen	2	Über ebm-papst	2
illionilatione.	_	Produkt-Matrix	5
		Systemübersicht SIMATIC MICRO-DRIVE	6
		Eigenschaften/Vorteile ECI-Motoren	7
		Vergleich F-TM ServoDrive und PDC	8
		Eigenschaften/Vorteile F-TM ServoDrive und PDC	9
Antriebskonzepte für SIMATIC	10	Servomotor ECI 42.xx-K1	10
MICRO-DRIVE		Servomotor ECI 63.xx-K1	14
		Servomotor ECI 80.xx-K1	18
		Planetengetriebe Performax*Plus 42	22
		Planetengetriebe Performax*Plus 63	24
		Planetengetriebe PE080	26
Zubehör	28	Encoder	28
		Bremse	29
Vertretungen	30	Vertretungen weltweit	30

Produktmatrix für SIMATIC MICRO-DRIVE

SIMATIC MICRO-DRIVE ist das neue Servoantriebssystem für den Schutzkleinspannungsbereich. Zusammengesetzt aus der Servoklemme "F-TM ServoDrive" und dem Servoregler "PDC" (ProfiDrive Control), flexibel einsetzbaren Motoren und Anschlusskabeln.

Im Rahmen eines Produkt-Partner-Programms bietet ebm-papst hierfür Motoren (50-750 Watt) in verschiedenen Baugrößen und diverse Getriebe an.

Bürstenlose Innenläufermotoren ECI		ECI- 42.20-K1 B00	ECI- 42.20-K1 D00	ECI- 42.40-K1 B00	ECI- 42.40-K1 D00	ECI- 63.20-K1 B00	ECI- 63.20-K1 D00	ECI- 63.40-K1 B00	ECI- 63.40-K1 D00	ECI- 63.60-K1 D00	ECI- 80.40-K1 D00	ECI- 80.60-k D00
U _N	VDC	24	48	24	48	24	48	24	48	48	48	48
M _N	mNm	110	110	220	220	360	360	670	670	880	1 200	1800
P	W	46	46	92	92	150	150	280	280	370	503	754
n _N	min ⁻¹	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000
I _N	Α	2,5	1,3	5,1	2,6	8,5	4,5	14	6,5	8,5	12,0	18,5
d	mm	42	42	42	42	63	63	63	63	63	80	80
Motorfeedback												
K1 (Hall-Sensorik)		Х	X	Χ	Х	Χ	Х	X	Χ	Х	Х	Х
Siemens iQ-Encoder		Х	Х	X	X	Χ	Х	X	Χ	Х	Х	Х
Bremsen												
Haltebremse (Ruhestrom)		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Planetengetriebe												
PerfomaxPlus 42.1		Χ	Χ	Χ	Χ							
PerfomaxPlus 42.2		Χ	Χ	Χ	Χ							
PerfomaxPlus 63.1						Χ	Χ	Χ	Χ	Χ		
PerfomaxPlus 63.2						Χ	Χ	Χ	Χ	Χ		
PE080											Χ	Χ
Antriebsregler*												
F-TM ServoDrive		Х	X	Χ	Х	Χ	Х	Χ	X			
PDC 100 / 100F		Х	X	X	X	Χ	Х	Χ	X			
PDC 600 / 600F		Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	
PDC 1000 V1						X	Х	X	Х	X	Х	Х

^{*} Hinweis für mögliche Kombinationen: Für die spezifische Auswahl des Antriebsregler bitte TIA Selection Tool nutzen. new.siemens.com/global/de/produkte/automatisierung/themenfelder/tia/tia-selection-tool.html

Systemübersicht SIMATIC MICRO-DRIVE

Systemübersicht SIMATIC MICRO-DRIVE

Einschließlich Standard-E/As und fehlersichere E/As

Konfiguration mit TIA-Portal ab V15.1 (nur Step 7)

Antriebsdimensionierung im TIA Selection Tool

SIMATIC S7 (S7-1200, S7-1500)

S7-1200

Inkrementalgeber/Hall ebenso wie zweites Encoder-Interface (SSI)

Inbetriebnahme im TIA Selection Tool

Eigenschaften / Vorteile ECI-Motoren für SIMATIC MICRO-DRIVE

ECI-Motor mit iQ-Encoder Technologie Eigenschaft / Funktion Vorteil Hohe Leistungsdichte auf kleinstem Bauraum ■ 3-phasiger, elektronisch kommutierter Innenläufer mit Hochleistungsmagnet Große Überlastfähigkeit ■ Rotorlageerfassung erfolgt durch Hall-Sensoren Hohe Lebensdauer ■ Wicklungsisolation nach Isolierstoffklasse E Exzellente Laufruhe Schutzart bis IP 54 nach EN 60 034-5 Industrietauglicher all-in-one-Stecker (drehbar) ■ Verschiedene Motortypen kombinierbar mit Selbstverriegelbarer Schnellverschluss Planetengetrieben All in one Stecker Vereinfachte Projektierung durch Ablage Motordaten im TIA-Portal ■ Bremseneinbau optional integrierter Automatische Erkennung von der Antriebskomponente durch elektronisches Informative Systemdiagnose-Meldungen Schnelle und einfache Inbetriebnahme Motortemperaturerfassung und Auswertung

Informationen / Vorteile durch Anbindung an SIMATIC S7-1500 @ SINAMICS in TIA portal

Eigenschaft / Funktion	Vorteil
Effizientes Engineering	+ Kürzere Einarbeitungszeit
■ Eine einzige einheitliche Engineering-Plattform	+ Reduzierter Engineering-Aufwand
Gemeinsame Funktionalitäten (Ablaufverfolgung, Bibliothek usw.)	+ Automatische Konsistenz innerhalb des Projekts
Integrierte Antriebssteuerung	
Objekte der SIMATIC-Motion-Control-Technologie	+ Antriebe können einfach an SIMATIC PLCs angeschlossen werden
Antriebsbibliotheken	+ Motion-Control-Anwendungen schnell und einfach realisiert
Integrierte Sicherheit	
■ Effiziente und sichere Inbetriebnahme	+ Noch schnellere Installation und Inbetriebnahme
Standardkomponenten mit integrierter Sicherheitstechnik	+ Weniger Hardware / keine zusätzlichen Komponenten
■ Integrierter Funktionsbaustein für SINAMICS	+ Mehr Flexibilität bei Erweiterungen und Anpassungen
PROFINET	
■ PROFIdrive	+ Standardisierte Kommunikation auf Basis von Standard-Ethernet
■ PROFIsafe	+ Einfacher Fernzugriff
Integrierte Systemdiagnose	+ Systemmeldungen sind ohne technischen Aufwand verfügbar (TIA Portal, PLC, Web-Server & HMI)


Vergleich

F-TM ServoDrive und PDC

Vergleich F-TM ServoDrive und PDC

F-TM ServoDrive + BaseUnit mit stehender Verdrahtung •

 $wurde \ f\"{u}r\ kleinere\ Leistungen\ in\ der\ Industrie\ entwickelt;\ Schwerpunkt:\ Kompaktheit\ +\ einfache\ Sicherheitsanforderungen.$

PDC Motor/Encoder Kabel + Versorgung + I/Os mit Steckverbindern •

ist ein PROFINET Teilnehmer; Schwerpunkt: höhere Leistung + erweiterte Sicherheitsfunktionalität (z. B. SLS und SLM).

Eigenschaften / Vorteile SIMATIC MICRO-DRIVE

F-TM ServoDrive

Eigenschaft / Funktion

- Flexibilität und Kombinierbarkeit der Systemkomponenten
- PROFINET
- Schneller Stromregeltakt 62.5 μs
- Integrierte Sicherheit: STO
- TIA Portal Integration
- Ein Kabel zum Motor
- Stehende Verdrahtung
- 24-48 VDC: 280 W
- Batterieversorgung inkl. Energierückgewinnung
- UL- Zertifizierung

- Universell einsetzbar
- Leistungssteigerung
- Hohe Leistungsdichte
- Erfüllt einfache Sicherheitsanforderungen
- Vereinfachte Inbetriebnahme
- Benutzerfreundlichkeit
- Spart Zeit bei der Installation und Inbetriebnahme
- Einsatzbereit für verschiedene Märkte
- Weltweiter Einsatz

PDC

Eigenschaft / Funktion

- Flexibilität und Kombinierbarkeit der Systemkomponenten
- PROFINET IRT (1 ms)
- Integrierte Sicherheit: STO, SS1, SLT*, SLS, SSM über PROFIsafe
- TIA-Portal-Integration
- "One Button Tuning"
- Ein Kabel zum Motor
- Integrierter EMV-Filter C1
- 24-48 V: 0,05-1 kW
- Batterieversorgung inkl. Energierückgewinnung
- UL- und Marine-Zertifizierung

- Erhöhte Leistung

Universell einsetzbar

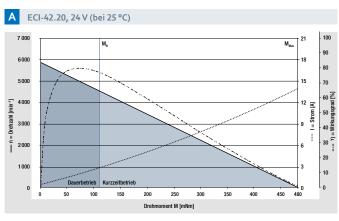
- Erfüllt hohe Sicherheitsanforderungen
- Einfaches Engineering
- Spart Zeit bei der Installation
- Einsatzbereit für verschiedene Märkte

* nur bei PDC 100F

Servomotor ECI-42.XX-K1

www.ebmpapst.com/eci-motoren

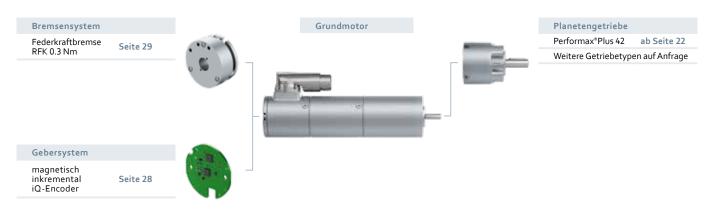
Beschreibung


- Hochdynamischer 3-phasiger Innenläufermotor in EC-Technologie
- Geringes Rastmoment
- Robustes und geräuschoptimiertes Kugellagersystem für hohe Lebensdauer
- Hoher Wirkungsgrad sowie hohe Leistungsdichte bei kompakter Bauform
- Grundmotor mit Elektronikmodul K1 für Betrieb mit externer Regelelektronik
- Mechanischer Aufbau und Schnittstellen, ausgelegt für modularen Systembaukasten
- Schutzart IP 54 und Anschluss über Steckersystem

Тур		ECI-42.20-K1-B00	ECI-42.20-K1-D00	ECI-42.40-K1-B00	ECI-42.40-K1-D00
Kennlinie		A		В	
Nennspannung (U _N)	V DC	24	48	24	48
Nenndrehzahl (n _N) ²⁾	min ⁻¹	4 000	4 000	4 000	4 000
Nenndrehmoment (M _N) ²⁾	mNm	110	110	220	220
Nennstrom (I _N) ²⁾	Α	2,50	1,30	5,10	2,60
Nennabgabeleistung (P _N) ²⁾	W	46,0	46,0	92,0	92,0
Anlaufmoment (M _{max})	mNm	480	480	960	960
Zul. Spitzenstrom (I _{max}) ³⁾	Α	7,50	3,90	15,3	7,80
Leerlaufdrehzahl (n_L)	min ^{−1}	5 900	5 900	5 700	5 700
$Leerlaufstrom (I_L) \\$	Α	0,33	0,10	0,40	0,20
Dauerblockiermoment (M _{NO})	mNm	100	100	200	200
Empf. Drehzahlregelbereich	min ^{−1}	0 5 000	0 5 000	0 5 000	0 5 000
Rotorträgheitsmoment (J _R)	kgm² x10-6	3,42	3,42	6,70	6,70
Motorkonstante (K _E)	mVs/rad	35,2	84,2	42,8	83,9
Anschlusswiderstand (R _v)	Ω	0,85	3,20	0,39	1,50
Anschlussinduktivität (L _q)	mH	1,45	5,91	0,64	2,79
Anschlussinduktivität (L _d)	mH	0,81	3,37	0,37	1,56
Schutz bei Überlast	Schutz bei Überlast			lektronik zu realisieren	
Zul. Umgebungstemperaturbereich ($T_{\rm U}$)	°C	0 +40	0 +40	0 +40	0 +40
Material Nr. 4)		SSE4220BK1xxxxxxxx60	SSE4220DK1xxxxxxxx60	SSE4240BK1xxxxxxxx60	SSE4240DK1xxxxxxxx60

¹⁾ Schutzartangabe bezieht sich auf den eingebauten Zustand mit Abdichtung an der Flanschseite

Vorläufige Daten, Änderungen vorbehalten


³ Zulässige Spitzenstromdauer: max. 3 Sek. – kann erst nach vollständiger Abkühlung wiederholt werden 4 Bei Bestellung eines Motors mit integrierter Bremse, beachten Sie bitte den Hinweis zur Material Nr. auf S. 29

Kennlinie 48 V auf Anfrage

Kennlinie 48 V auf Anfrage

Modulares Antriebssystem

Antriebsregler

F-TM ServoDrive Beschreibung Seite 9

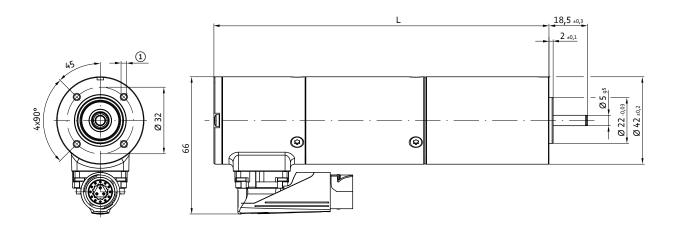
Zu beziehen über Fa. Siemens Mehr unter: new.siemens.com (Produkte & Services -> Antriebstechnik -> Umrichter -> Servoantriebssystem SIMATIC MICRO-DRIVE)

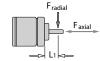
Antriebsregler

PDC 100 / 100F Beschreibung Seite 9

Zu beziehen über Fa. Siemens Mehr unter: new. siemens.com (Produkte & Services -> Antriebstechnik -> Umrichter -> Servoantriebssystem SIMATIC MICRO-DRIVE)

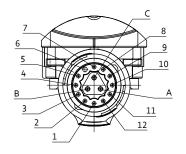
Kabel		
	F-TM ServoDrive	PDC100
Anschlusskabel	CSD_LAiO2	LAiO2
Bremskabel	LPBr2	LPBr2


Bei Motor-Getriebe-Kombinationen kann, abhängig von der Auswahl der Einzelkomponenten, das zulässige Drehmoment (Getriebe) überschritten bzw. nicht erreicht werden.


Antriebskonzepte jr SIMATIC MICRO-DRIVE

Technische Zeichnung ohne Bremse

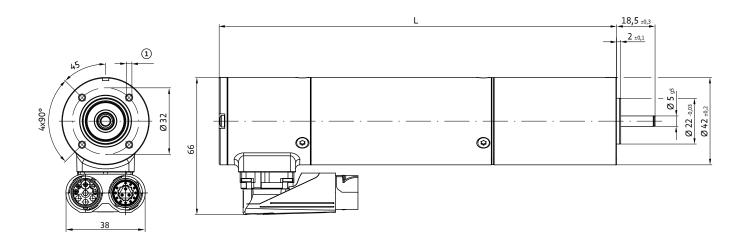
Typ L ECI-42.20 $161 \pm 0,4$ ECI-42.40 $181 \pm 0,4$


 $\textcircled{1} \begin{tabular}{l} 4 \ x \ F\"{u}r \ gewindefurchende Schrauben M3 \ nach DIN7500, \\ Einschraubtiefe \ max. 9,5 \end{tabular}$

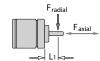
Zulässige Wellenbelastung

 $\begin{array}{lll} F_{axial} \colon & 20 \text{ N} & \text{Zul. gleichzeitige Wellenbelastungen} \\ F_{radial} \colon & 100 \text{ N} & \text{bei Nenndrehzahl und einer Lebensdauererwartung L}_{10} \text{ (im Nennbetrieb)} \\ L_1 \colon & 10 \text{ mm} & \text{von 20 000 h (bei T}_{\text{U}} \text{ max. 40 °C)} \end{array}$

Elektrischer Anschluss ohne Bremse

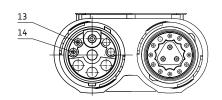


Pin	Anschluss	Kennung
1	HA	Hall Signal A
2	НВ	Hall Signal B
3	НC	Hall Signal C
4	+12V	Versorgungsspannung
5	GND	Masse
6	leer	leer
7	Α	Geber Kanal A
8	/A	Geber Kanal A negiert
9	В	Geber Kanal B
10	/B	Geber Kanal B negiert
11	+5V	Versorgungsspannung
12	GND	Masse
Α	U	Wicklungsanschluss U
В	V	Wicklungsanschluss V
С	W	Wicklungsanschluss W
	1 2 3 4 5 6 7 8 9 10 11 12 A	1 HA 2 HB 3 HC 4 +12V 5 GND 6 leer 7 A 8 /A 9 B 10 /B 11 +5V 12 GND A U B V


Technische Zeichnung mit integrierter Bremse

Maßangaben in mm

Typ L ECI-42.20 $191 \pm 0,4$ ECI-42.40 $211 \pm 0,4$



 $\textcircled{1} \begin{tabular}{l} 4 \ x \ F\"{u}r \ gewindefurchende Schrauben M3 \ nach DIN7500, \\ Einschraubtiefe \ max. 9,5 \end{tabular}$

Zulässige Wellenbelastung

Elektrischer Anschluss mit integrierter Bremse

	Pin	Anschluss	Kennung
Drames	13	+24 V	Versorgungsspannung
Bremse	14	GND	Masse

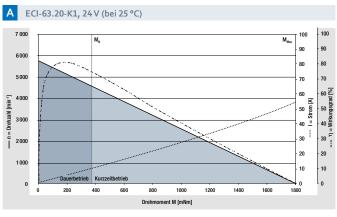
Servomotor ECI-63.XX-K1

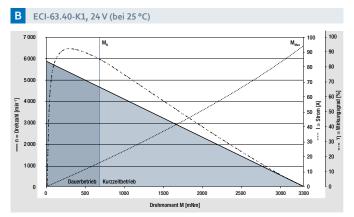
www.ebmpapst.com/eci-motoren

Beschreibung

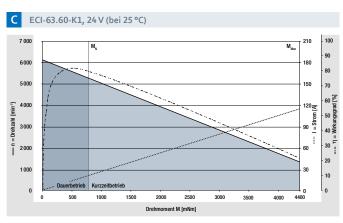
- Hochdynamischer 3-phasiger Innenläufermotor in EC-Technologie
- Geringes Rastmoment
- Robustes und geräuschoptimiertes Kugellagersystem für hohe Lebensdauer
- Hoher Wirkungsgrad sowie hohe Leistungsdichte bei kompakter Bauform
- Grundmotor mit Elektronikmodul K1 für Betrieb mit externer Regelelektronik
- Mechanischer Aufbau und Schnittstellen, ausgelegt für modularen Systembaukasten
- Schutzart IP 54 und Anschluss über Steckersystem

Тур		ECI-63.20-K1 -B00	ECI-63.20-K1 -D00	ECI-63.40-K1 -B00	ECI-63.40-K1 -D00	ECI-63.60-K1 -D00
Kennlinie		A		В		C
Nennspannung (U _N)	V DC	24	48	24	48	48
Nenndrehzahl (n _N) ²⁾	min ⁻¹	4 000	4 000	4 000	4 000	4 000
Nenndrehmoment (M _N) ²⁾	mNm	360	360	670	670	880
Nennstrom (I _N) ²⁾	Α	8,50	4,50	14,0	6,50	8,50
Nennabgabeleistung (P _N) ²⁾	W	150	150	280	280	370
Anlaufmoment (M _{max})	mNm	1 800	1 800	3 300	3 300	4 400
Zul. Spitzenstrom (I _{max}) ³⁾	Α	25,5	13,5	42.0	19,5	25,5
Leerlaufdrehzahl (n_L)	min ⁻¹	5 250	5 250	5 250	5 250	5 250
$Leer lauf strom (I_L) \\$	Α	0,50	0,30	0,70	0,32	0,45
Empf. Drehzahlregelbereich	min ⁻¹	0 5 000	0 5 000	0 5 000	0 5 000	0 5 000
Rotorträgheitsmoment (J _R)	kgm² x10-6	19,0	19,0	38,0	38,0	57,0
Motorkonstante (K _E)	mVs/rad	41,4	73,3	40,4	83,8	83,8
Anschlusswiderstand (R _V)	Ω	0,14	0,42	0,08	0,24	0,15
Anschlussinduktivität (L _q)	mH	0,33	1,13	0,16	0,65	0,39
Anschlussinduktivität (L _d)	mH	0,21	0,70	0,10	0,39	0,23
Schutz bei Überlast		Ist über die Ansteuerelektronik zu realisieren				
Zul. Umgebungstemperaturbereich ($T_{_{\scriptsize U}}$)	°C	0 +40	0 +40	0 +40	0 +40	0 +40
Material Nr. ⁴⁾		SSE6320BK1xxxxxxxx60	SSE6320DK1xxxxxxxx60	SSE6340BK1xxxxxxxx60	SSE6340DK1xxxxxxxx60	SSE6360DK1xxxxxxxx60


¹⁾ Schutzartangabe bezieht sich auf den eingebauten Zustand mit Abdichtung an der Flanschseite Die Wellengeometrie bei der IP54 Ausführung ist abweichend zu der dargestellten Zeichnung ²⁾ Bei T_U max. 40 °C


4) Bei Bestellung eines Motors mit integrierter Bremse, beachten Sie bitte den Hinweis zur Material Nr. auf S. 29

Vorläufige Daten, Änderungen vorbehalten


³⁾ Zulässige Spitzenstromdauer: max. 3 Sek. – kann erst nach vollständiger Abkühlung wiederholt werden


Kennlinie 48 V auf Anfrage

Kennlinie 48 V auf Anfrage

Kennlinie 48 V auf Anfrage

Modulares Antriebssystem

F-TM ServoDrive Beschreibung Seite 9

Zu beziehen über Fa. Siemens Mehr unter: new. siemens.com (Produkte & Services -> Antriebstechnik -> Umrichter -> Servoantriebssystem SIMATIC MCRO-DRIVE)

PDC600, PDC600F, PDC1000 V1 Beschreibung Seite 9

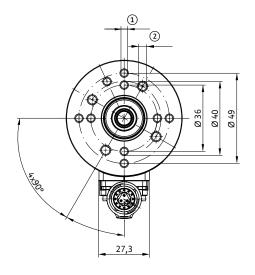
Zu beziehen über Fa. Siemens Mehr unter: new.siemens.com (Produkte & Services -> Antriebstechnik -> Umrichter -> Servoantriebssystem SIMATIC MCRO-DRIVE)

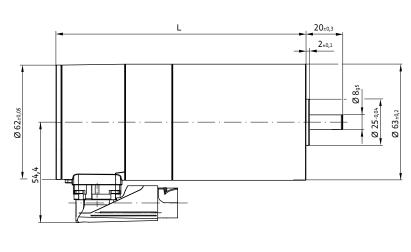
Kabel		
	F-TM ServoDrive	PDC600/600F/1000 V1
Anschlusskabel	CSD_LAiO2	LAiO20
Bremskabel	LPBr2	LPBr2

Zu beziehen über Fa. KnorrTec, www.knorrtec.de und/oder über Fa. Harting, www.harting.com

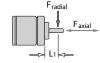
Bei Motor-Getriebe-Kombinationen kann, abhängig von der Auswahl der Einzelkomponenten, das zulässige Drehmoment (Getriebe) überschritten bzw. nicht erreicht werden.

Antriebskonzepte Für SIMATIC MICRO-DRIV

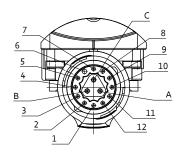

Technische Zeichnung ohne Bremse


 Typ
 L

 ECI-63.20
 $135,6 \pm 0,4$


 ECI-63.40
 $155,6 \pm 0,4$

 ECI-63.60
 $175,6 \pm 0,4$


- $\textcircled{1}\ \ \mbox{8 x für gewindefurchende Schrauben M4 nach DIN7500,} \ \mbox{Einschraubtiefe max.}\ \ \mbox{10}$
- ② 4 x für gewindefurchende Schrauben M5 nach DIN7500, Einschraubtiefe max. 10

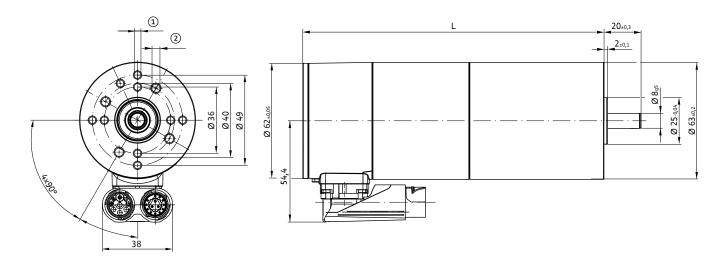
Zulässige Wellenbelastung

 $\begin{array}{lll} F_{axial}: & 150 \text{ N} & Zul. \text{ gleichzeitige Wellenbelastungen} \\ F_{radial}: & 150 \text{ N} & bei \text{ Nenndrehzahl und einer Lebensdauererwartung L_{10} (im Nennbetrieb)} \\ L_{1}: & 10 \text{ mm} & von 20 000 \text{ h (bei T_{U} max. 40 °C)} \end{array}$

Elektrischer Anschluss ohne Bremse

	Pin	Anschluss	Kennung
	1	HA	Hall Signal A
	2	НВ	Hall Signal B
HALL	3	НC	Hall Signal C
	4	+12V	Versorgungsspannung
	5	GND	Masse
	6	leer	leer
	7	Α	Geber Kanal A
	8	/A	Geber Kanal A negiert
6.1	9	В	Geber Kanal B
Geber	10	/B	Geber Kanal B negiert
	11	+5V	Versorgungsspannung
	12	GND	Masse
	Α	U	Wicklungsanschluss U
Motor	В	V	Wicklungsanschluss V
	С	W	Wicklungsanschluss W

Technische Zeichnung mit integrierter Bremse

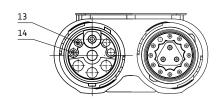

Maßangaben in mm

 Typ
 L

 ECI-63.20
 $162,4 \pm 0,4$

 ECI-63.40
 $182,4 \pm 0,4$

 ECI-63.60
 $202,4 \pm 0,4$


- $\textcircled{1}\ \ \mbox{8 x für gewindefurchende Schrauben M4 nach DIN7500,} \ \mbox{Einschraubtiefe max.}\ \ \mbox{10}$
- \bigcirc 4 x für gewindefurchende Schrauben M5 nach DIN7500, Einschraubtiefe max. 10

Zulässige Wellenbelastung

 $\begin{array}{lll} F_{axdal}: & 150 \text{ N} & Zul. \text{ gleichzeitige Wellenbelastungen} \\ F_{radial}: & 150 \text{ N} & bei \text{ Nenndrehzahl und einer Lebensdauererwartung L_{10} (im Nennbetrieb)} \\ L_1: & 10 \text{ mm} & \text{von 20 000 h (bei T_{U} max. 40 °C)} \end{array}$

Elektrischer Anschluss mit integrierter Bremse

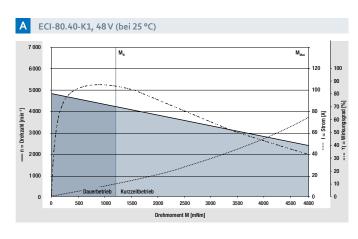
	Pin	Anschluss	Kennung
Drames	13	+24 V	Versorgungsspannung
Bremse	14	GND	Masse

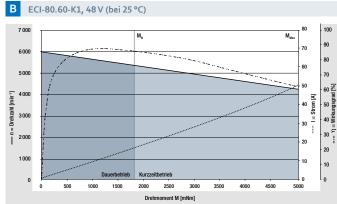
Servomotor ECI-80.XX-K1

www.ebmpapst.com/eci-motoren

Beschreibung

- Hochdynamischer 3-phasiger Innenläufermotor in ECTechnologie
- Geringes Rastmoment
- Robustes und geräuschoptimiertes Kugellagersystem für hohe Lebensdauer
- Hoher Wirkungsgrad sowie hohe Leistungsdichte bei kompakter Bauform
- Grundmotor mit Elektronikmodul K1 für Betrieb mit externer Regelelektronik
- Mechanischer Aufbau und Schnittstellen, ausgelegt für modularen Systembaukasten
- Schutzart IP 54 und Anschluss über Steckersystem


Тур		ECI-80.40-K1 -D00	ECI-80.60-K1 -D00			
Kennlinie		A	В			
Nennspannung (U _N)	V DC	48	48			
Nenndrehzahl (n _N) ²⁾	min ⁻¹	4 000	4 000			
Nenndrehmoment (M _N) ²⁾	mNm	1 200	1 800			
Nennstrom (I _N) ²⁾	Α	12,0	18,5			
Nennabgabeleistung (P _N) ²⁾	W	503	754			
Anlaufmoment (M _{max})	mNm	5 000	5 600			
Zul. Spitzenstrom (I _{max}) ³⁾	Α	100	100			
Leerlaufdrehzahl (n _L)	min ⁻¹	4 850	6 100			
Leerlaufstrom (I_L)	Α	0,90	1,00			
Empf. Drehzahlregelbereich	min ⁻¹	0 4 000	0 4 000			
Rotorträgheitsmoment (J _R)	kgm² x10 ⁻⁶	104	155			
Motorkonstante (K _E)	mVs/rad	96,0	72,2			
Anschlusswiderstand (R _v)	Ω	0,10	0,04			
Anschlussinduktivität (L _q)	mH	554	201			
Anschlussinduktivität (L _d)	mH	271	97			
Schutz bei Überlast		lst über die Ansteuerelektronik zu realisieren				
Zul. Umgebungstemperaturbereich ($T_{\rm U}$)	°C	-30 +40	-30 +40			
Material Nr. ⁴⁾		SSE8040DK1xxxxxxxx60	SSE8060DK1xxxxxxxx60			


¹⁾ Schutzartangabe bezieht sich auf den eingebauten Zustand mit Abdichtung an der Flanschseite

Vorläufige Daten, Änderungen vorbehalten

[™] Bei T_U max. 40 °C [™] Zulässige Spitzenstromdauer: max. 5 Sek. – kann erst nach vollständiger Abkühlung wiederholt werden [©] Bei Bestellung eines Motors mit integrierter Bremse, beachten Sie bitte den Hinweis zur Material Nr. auf S. 29

Modulares Antriebssystem

Bremsensystem Federkraftbremse RFK 2,0 Nm

ab Seite 29

Planetengetriebe

PE080 ab Seite 26 Weitere Getriebetypen auf Anfrage

Gebersystem

magnetisch Inkremental IQ-Encoder

ab Seite 28

Antriebsregler

PDC 600 / 600F / 1000 V1

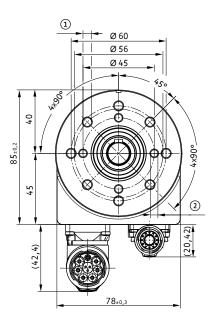
Beschreibung Seite 9

Zu beziehen über Fa. Siemens Mehr unter: new. siemens.com (Produkte & Services -> Antriebstechnik -> Umrichter -> Servoantriebssystem SIMATIC MCRODRIVE)

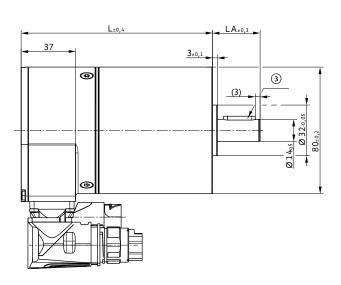
Kabel

	, ,
Anschlusskabel Motor	LPMo3
Anschlusskabel Encoder	LPEn2
Anschlusskabel Bremse	LPBr2

Zu beziehen über Fa. KnorrTec, www.knorrtec.de und/oder über Fa. Harting, www.harting.com

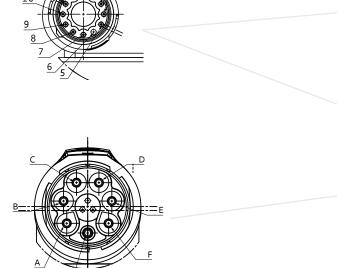


Bei Motor-Getriebe-Kombinationen kann, abhängig von der Auswahl der Einzelkomponenten, das zulässige Drehmoment (Getriebe) überschritten bzw. nicht erreicht werden.



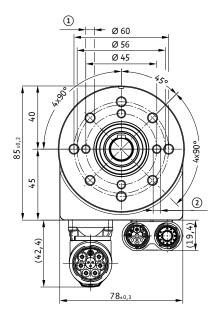
Technische Zeichnung ohne Bremse

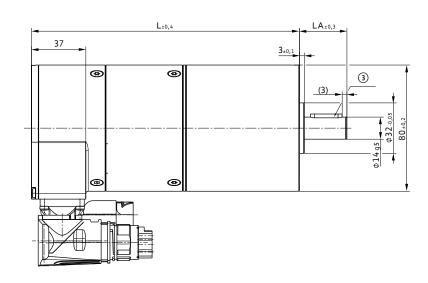
 $\begin{array}{ll} \mbox{Typ} & \mbox{L} \\ \mbox{ECI-80.40} & 141 \pm 0,6 \\ \mbox{ECI-80.60} & 161 \pm 0,6 \end{array}$


- $\textcircled{1}\ 8$ x für gewindefurchende Schrauben M6 nach DIN7500, Einschraubtiefe max. 13
- $\textcircled{2} \ ^{4\,x\,f\"{u}r} \ gewindefurchende Schrauben M5 nach DIN7500,}_{Einschraubtiefe \ max.\ 13}$
- 3 Passfeder A5x5x20 DIN 6885

Zulässige Wellenbelastung

Elektrischer Anschluss ohne Bremse



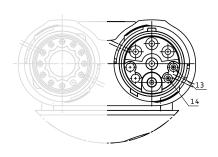

	Pin	Anschluss	Kennung
	1	HA	Hall Signal A
	2	НВ	Hall Signal B
HALL	3	HC	Hall Signal C
HALL	4	+12V	Versorgungsspannung
	5	GND	Masse
	6	leer	leer
	7	Α	Geber Kanal A
	8	nA	Geber Kanal A negiert
Geber	9	В	Geber Kanal B
Gebei	10	nB	Geber Kanal B negiert
	11	+5V	Versorgungsspannung
	12	GND	Masse
	Α	W	Wicklungsanschluss W
	В		nicht belegt
	С	V	Wicklungsanschluss V
Motor	D		nicht belegt
	Е	U	Wicklungsanschluss U
	F		nicht belegt
	G		Erdung

Technische Zeichnung mit integrierter Bremse

Maßangaben in mm

Тур L ECI-80.40 195 ± 0,6 ECI-80.60 215 ± 0,6

- $\textcircled{1}\ 8$ x für gewindefurchende Schrauben M6 nach DIN7500, Einschraubtiefe max. 13
- $\textcircled{2} \ ^{4\,x\,f\"{u}r} \ gewindefurchende Schrauben M5 nach DIN7500,}_{Einschraubtiefe \ max.\ 13}$
- 3 Passfeder A5x5x20 DIN 6885



Zulässige Wellenbelastung

70 N Zul. gleichzeitige Wellenbelastungen

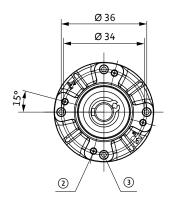
330 N bei Nenndrehzahl und einer Lebensdauererwartung L₁₀ (im Nennbetrieb) von 20 000 h (bei T_U max. 40 °C)

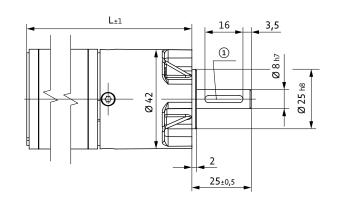
Elektrischer Anschluss mit integrierter Bremse

	Pin	Anschluss	Kennung
Dromes	13	+24 V	Versorgungsspannung
Bremse	14	GND	Masse

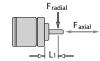
Planetengetriebe Performax®Plus 42 für ECI-42.xx

Mehr unter


www.ebmpapst.com/eci-motoren


Beschreibung

- Hohe Leistungsdichte aus kompakten Abmessungen
- Hohe Laufruhe aufgrund schrägverzahnt ausgeführter erster Getriebestufe
- Planetenräder aus gleitoptimiertem Kunststoff in der ersten Getriebestufe unterstützen Laufruhe
- Großer Wirkdurchmesser durch Radialverschraubung
- Wirtschaftlicher Aufbau aufgrund Verwendung vieler formfallender Einzelteile
- Beliebige Einbaulage zulässig
- Fettschmierung auf Lebensdauer


Тур		Performax®Plus 42.1		Performax	®Plus 42.2
Untersetzung		5,00	9,00	30,0	54,0
Stufenzahl		1	1	2	2
Wirkungsgrad		0,90	0,90	0,81	0,81
Max. Eingangsdrehzahl (n ₁)	min-1	6 000	6 000	6 000	6 000
Nennabtriebsmoment (M _{ab})	Nm	2,00	1,12	4,48	6,70
Kurzzeitmoment (M _{max})	Nm	5,00	2,80	11,2	16,8
Getriebespiel	•	0,7 1,2	0,7 1,2	0,7 1,2	0,7 1,2
Zul. Umgebungstemperaturbereich ($T_{\rm U}$)	°C	-20 +80	-20 +80	-20 +80	-20 +80
Betriebsart		S1	S 1	S1	S 1
Schutzart		IP 50	IP 50	IP 50	IP 50
Gewicht	kg	0,22	0,22	0,33	0,33
Wellenbelastung radial/axial	N	250 / 150	250 / 150	250 / 150	250 / 150
Lebensdauer	h	5 000	5 000	5 000	5 000
Länge	mm	39,3	39,3	54,8	54,8

Vorzugstyp in 4 Arbeitstagen versandfertig.

- ① Passfeder / DIN 6885 A-3x3x16
- ② 4 x M3, 8 tief
- 3 4 x M4, 8 tief

Zulässige Wellenbelastung

150 N 250 N 12,5 mm

Bei Nenndrehzahl, Betriebsfaktor $C_{\rm B}$ =1 und einer Lebensdauererwartung L_{10} von 5 000 h (bei $T_{\rm U}$ max. 40°C im Nennbetrieb)

Länge der möglichen Motor-Getriebe-Kombinationen

Maßangaben in mm

Motor-Getriebe			Länge L	Länge L
	Spannung	Untersetzung	1-stufiges Getriebe	2-stufiges Getriebe
SGE4220BK1PP42100560	24V		161 + 39,3 = 200,3	
SGE4240BK1PP42100560	247	5	181 + 39,3 = 220,3	
SGE4220DK1PP42100560	48V	5	200,3	
SGE4240DK1PP42100560	487		220,3	
SGE4220BK1PP42100960	24V		200,3	
SGE4240BK1PP42100960	247	9	220,3	
SGE4220DK1PP42100960	48V	9	200,3	
SGE4240DK1PP42100960	401		220,3	
SGE4220BK1PP42203060	24V			161 + 54,8 = 215,8
SGE4240BK1PP42203060	247	30		181 + 54,8 = 235,8
SGE4220DK1PP42203060	48V	30		215,8
SGE4240DK1PP42203060	401			235,8
SGE4220BK1PP42205460	24V			215,8
SGE4240BK1PP42205460	24 V	54		235,8
SGE4220DK1PP42205460	48V	34		215,8
SGE4240DK1PP42205460	48V			235,8

Planetengetriebe Performax®Plus 63 für ECI-63.xx

Mehrunter

www.ebmpapst.com/eci-motoren

Beschreibung

- Hohe Drehmomente durch größere Verzahnungsbreiten in der ersten Getriebestufe
- Gute Stoßfestigkeit durch Gehäuse aus gehärtetem Stahl mit Geradverzahnung in der Abtriebsstufe
- Hohe Laufruhe aufgrund schrägverzahnt ausgeführter erster Getriebestufe
- Planetenräder aus gleitoptimiertem Kunststoff in der ersten Getriebestufe unterstützen die Laufruhe
- Großer Wirkdurchmesser durch Radialverschraubung
- Beliebige Einbaulage zulässig
- Fettschmierung auf Lebensdauer

Тур		Performax	®Plus 63.1	Performax	®Plus 63.2
Untersetzung		5,00	9,00	30,0	54,0
Stufenzahl		1	1	2	2
Wirkungsgrad		0,90	0,90	0,81	0,81
Max. Eingangsdrehzahl (n ₁)	min-1	6 000	6 000	6 000	6 000
Nennabtriebsmoment (M _{ab})	Nm	11,9	7,60	64,0	41,0
Kurzzeitmoment (M _{max})	Nm	29,8	19,0	160	102,5
Getriebespiel	0	0,7 1,2	0,7 1,2	0,7 1,2	0,7 1,2
Zul. Umgebungstemperaturbereich ($T_{\rm U}$)	°C	0 +40	0 +40	0 +40	0 +40
Betriebsart		S1	S 1	S1	S 1
Schutzart		IP 50	IP 50	IP 50	IP 50
Gewicht	kg	0,66	0,66	1,20	1,20
Wellenbelastung radial/axial	N	350 / 500	350 / 500	350 / 500	350 / 500
Lebensdauer	h	5 000	5 000	5 000	5 000
Länge	mm	57,7	57,7	79,1	79,1

Vorzugstyp in 4 Arbeitstagen versandfertig

Ø 52

L±1

- ① Passfeder / DIN 6885 A-5x5x28
- 2 4 x M5, 10 tief

28

Länge der möglichen Motor-Getriebe-Kombinationen

Maßangaben in mm

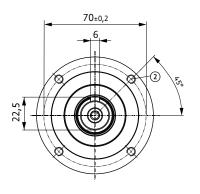
Motor-Getriebe			Länge L	Länge L
	Spannung	Untersetzung	1-stufiges Getriebe	2-stufiges Getriebe
SGE6320BK1PP63100560	24V		135,6 + 57,7 = 193,3	
SGE6340BK1PP63100560	247		155,6 + 57,7 = 213,3	
SGE6320DK1PP63100560		5	193,3	
SGE6340DK1PP63100560	48V		213,3	
SGE6360DK1PP63100560			175,6 + 57,7 = 233,3	
SGE6320BK1PP63100960	24V		193,3	
SGE6340BK1PP63100960	247		213,3	
SGE6320DK1PP63100960		9	193,3	
SGE6340DK1PP63100960	48V		213,3	
SGE6360DK1PP63100960			233,3	
SGE6320BK1PP63203060	24V			135,6 +79,1 = 214,7
SGE6340BK1PP63203060	247			155,6 + 79,1 = 234,7
SGE6320DK1PP63203060		30		214,7
SGE6340DK1PP63203060	48V			234,7
SGE6360DK1PP63203060				175,6 + 79,1 = 254,7
SGE6320BK1PP63205460	24V			214,7
SGE6340BK1PP63205460	24 V			234,7
SGE6320DK1PP63205460		54		214,7
SGE6340DK1PP63205460	48V			234,7
SGE6360DK1PP63205460				254,7

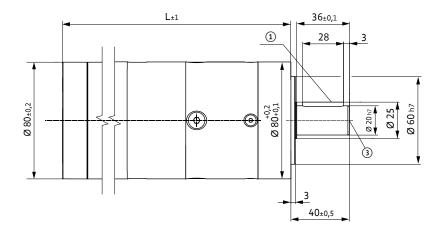
Planetengetriebe PE080

www.ebmpapst.com/eci-motoren

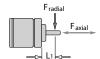
Beschreibung

- Einsatzgehärtete / geschliffene Hohlräder
- Einsatzgehärtete / geschliffene Planetenund Sonnenräder für erhöhte Übertragungsgüte und lange Lebensdauer
- Geringes Verdrehspiel
- Hoher Wirkungsgrad und geräuscharmer Lauf durch hohe Zahnflankengüte, nadelgelagerte Planetenräder und hochwertigem Schmierstoff
- Hohe Verdrehsteifigkeit und hohes Not-Aus-Moment durch robuste Getriebekonstruktion und optimierte Verzahnungsgeometrie


Тур		PE080.1		PE08	80.2
Untersetzung ¹⁾		5,00	8,00	25,0	40,0
Stufenzahl		1	1	2	2
Wirkungsgrad		0,96	0,96	0,94	0,94
Max. Eingangsdrehzahl (n ₁)	min-1	6 500	6 500	6 500	6 500
Nennabtriebsmoment (M _{ab})	Nm	115	55	125	125
Kurzzeitmoment (M _{max}) ²⁾	Nm	184	88	200	200
Notausmoment (M _{not}) ³⁾	Nm	230	110	250	250
Getriebespiel	arcmin	≤7	≤7	≤ 9	≤ 9
Zul. Umgebungstemperaturbereich (T_U)	°C	-25 +90	-25 +90	-20 +80	-20 +80
Betriebsart		S1	S 1	S1	S1
Schutzart		IP 64	IP 64	IP 64	IP 64
Gewicht	kg	2,30	2,30	2,80	2,80
Wellenbelastung radial/axial	N	750 / 900	750 / 900	750 / 900	750 / 900
Lebensdauer	h	30 000	30 000	30 000	30 000
Länge	mm	112	112	126,5	126,5


Weitere Untersetzungen und 3-stufige Ausführungen auf Anfrage
 Zulässig für 30 000 Lastspiele
 1000 mal während der gesamten Lebensdauer zulässig

Technische Zeichnung


Abbildung 1-stufiges Getriebe

Maßangaben in mm

- ① Passfeder / DIN 6885 A-6x6x28
- 2 4 x M6, 10 tief
- ③ 1 x M6, DIN 332

Zulässige Wellenbelastung

900 N 750 N 20 mm

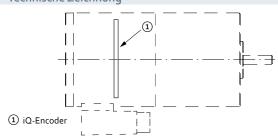
Bei Nenndrehzahl, Betriebsfaktor $C_{\rm B}$ =1 und einer Lebensdauererwartung $L_{\rm 10}$ von 30 000 h (bei $T_{\rm U}$ max. 40°C im Nennbetrieb)

Länge der möglichen Motor-Getriebe-Kombinationen

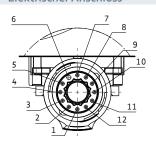
Maßangaben in mm

Motor-Getriebe			Länge L	Länge L
	Spannung	Untersetzung	1-stufiges Getriebe	2-stufiges Getriebe
GE8040DK1PE80100560		5	155,6 + 112 = 267,6	
GE8060DK1PE80100560	48 V	5	175,6 + 112 = 287,6	
GE8040DK1PE80100860	40 V	0	267,6	
GE8060DK1PE80100860		8	287,6	
GE8040DK1PE80202560		25		155,6 + 126,5 = 282,1
GE8060DK1PE80202560	48 V	25		175,6 + 126,5 = 302,1
GE8040DK1PE80204060	48 V	/0		282,1
GE8060DK1PE80204060		40		302,1

Encoder


Beschreibung

- Magnetischer Inkrementalgeber
- Speicherung der Motordaten in der HSP Motorbibliothek (TIA Portal; Siemens)
- Automatische Motorerkennung während Inbetriebnahme
- Systemdiagnostik
- Schnellere und einfachere Kommissionierung
- Temperaturmodel in TIA hinterlegt
- Patentierte Datenübertragung über vorhandene Signalleitungen
- Encoder im Antriebsgehäuse integriert


Тур	iQ-Encoder (magnetischer Inkrementalgeber)
Ausgangssignale	2 Rechtecksignale (A, B), 2 Rechtecksignale invers (nA, nB) Ausgang differential oder single ended TTL kompatibel, phasenverschoben
mpulszahl pro Umdrehung	100 (default), andere Auflösungen auf Anfrage
Grenzfrequenz	Die maximale Frequenz ist 5 KHz
Versorgungsspannung	+ 5V (+/- 10%) (bereitgestellt durch SIEMENS PDCxxx=)
Stromaufnahme	typ. 40 mA ma. 100 mA
zulässiger Ausgangsstrom	max. 20 mA
zulässige Abweichung der Pulsbreite von elektrisch 180°	+/- 90°
Phasenverschiebung zwischen Kanal A und B	typ. 90° (+/- 30°)
Ausgangsspannung (low level)	typ. 0,25 V, max 0,8 V (I=20 mA bei 5 V)
Ausgangsspannung (high level)	typ. 4,25 V, min 3,8 V (I=-20 mA bei 5 V)
zul. Umgebungstemperaturbereich (T _u)	0 +40
Verpolschutz	Erfolgt durch Kurzschluss der Versorgungsspannung per Schutzdiode, max. 200 mA Dauerstrom zulässig

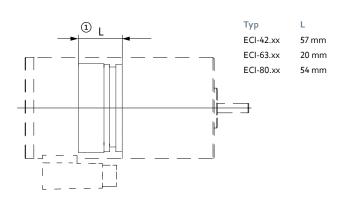
Änderungen vorbehalten

Technische Zeichnung

Elektrischer Anschluss

	Pin	Anschluss	Kennung
	7	Α	Geber Kanal A
	8	/A	Geber Kanal A negiert
C-h	9	В	Geber Kanal B
Geber	10	/B	Geber Kanal B negiert
	11	+5V	Versorgungsspannung
	12	GND	Masse

Bremse


Beschreibung

- Bremse nach Prinzip Federkraft
- Einscheibenbremsen mit 2 Reibflächen
- Bremsmoment wirkt im stromlosen Zustand
- Bremskraft wird durch elektromagnetische Kraft aufgehoben
- Haltebremse mit Not-Stopp-Funktion
- Stromlos betätigte Bremse mit hoher Leistungsdichte
- Reduzierte Massenträgheit für optimale Dynamik

Тур		integriert RFK 0,3 Nm Bremsmodul ECI-42	integriert RFK 1,0 Nm Bremsmodul ECI-63	integrierte RFK 2,0 Nm Bremsmodul ECI-80
Nennspannung	V DC	24	24	24
Nennleistung	W	6	9	11,4
Bremsmoment	Nm	0,3	1	2
Schließ-, Anzugszeit	ms	≤ 25	≤ 20	≤ 10
Öffnungs-, Abfallzeit	ms	≤ 85	≤ 60	≤ 58

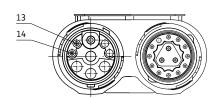
Änderungen vorbehalten

Abmessungen integrierte Bremse

Hinweis zur Material Nr.

Bitte achten Sie bei der Bestellung auf die letzte Ziffer:

SSE8040DK1xxxxxxxx6[x]-


Exemplarische Material Nr.

---- 1 = integrierte Bremse

---- 0 = ohne Bremse

① Durch den Einbau des Bremsenmoduls verlängert sich das Antriebsgehäuse


Elektrischer Anschluss

	Pin	Anschluss	Kennung	
Bremse	13	+24 V	Versorgungsspannung	
	14	GND	Masse	

Vertretun

Regionen in Deutschland.

ebm-papst weltweit.

Deutschland

Region Nord Norderstedt

Breuell & Hilgenfeldt GmbH Udo Wildenblanck Regionalleitung Vertrieb Antriebstechnik Oststraße 96 22844 Norderstedt Phone +49 9123 945-7291 Fax +49 9123 945-5291 Udo.Wildenblanck@de.ebmpapst.com

Region Mitte / Ost ebm-papst St. Georgen GmbH & Co. KG Werk 7- Lauf

Florian Sonnenberg Industriestraße 9 91207 Lauf a.d. Pegnitz Phone +49 9123 945-7295 Fax +49 9123 945-5295 Florian.Sonnenberg@de.ebmpapst.com

Region Mitte / West Hemsbach

Markus Psik
Am Dreispitz 16
69502 Hemsbach
Phone +49 9123 945-7293
Fax +49 9123 945-5293
Markus.Psik(@de.ebmpapst.com

Region Süd / West

Ihringen
Mario Rudmann
Hauptstraße 27
79241 Ihringen
Phone +49 9123 945-7294
Fax +49 9123 945-5294
Mario.Rudmann@de.ebmpapst.com

Region Süd / Ost 2 Baierbrunn

Patrick Christleven
Bernhard-Pankok-Weg 4
82065 Baierbrunn
Phone +49 9123 945-7203
Fax +49 9123 945-5203
Patrick.Christleven@de.ebmpapst.com

Europa

- Frankreich

ebm-papst sarl Parc d'Activités Nord 1 rue Mohler – BP 62 67212 Obermai Cedex Phone +33 3 88 66 88 03 info@ebmpapst.fr www.ebmpapst.fr

- Großbritannien

ebm-papst UK Ltd. Chelmsford Business Park Chelmsford Essex CM2 5EZ UNITED KINGDOM Phone +44 1245 468555 Fax +44 1245 466336 sales@uk.ebmpapst.com www.ebmpapst.co.uk

- Italien

ebm-papst Srl Via Cornaggia 108 22076 Mozzate (Co) Phone +39 0331 8362013 Fax +39 0331 821510 info@it.ebmpapst.com www.ebmpapst.it

-■ Benelux

ebm-papst Benelux B.V.
Polbeemd 7 – 5741 TP Beek en Donk
P.O. Box 140 – 5740 AC Beek en Donk
Phone +31 492 502-900
Fax +31 492 502-950
verkoop@nl.ebmpapst.com
www.ebmpapst.nl

- Österreich

ebm-papst Motoren & Ventilatoren GmbH Straubingstraße 17 4030 Linz Phone +43 732 321150-0 Fax +43 732 321150-20 info@at.ebmpapst.com www.ebmpapst.at

- Russland

ebm-papst Rus GmbH Olimpiyskiy prospect 29A, office 418 141006 Mytistschi, Oblast Moskau Phone +7 495 9807524 Fax +7 795 5140924 info@ebmpapst.ru www.ebmpapst.ru

- Schweden

ebm-papst AB Äggelundavägen 2 17562 Järfälla Phone +46 10 4544400 Fax +46 8 362306 info@ebmpapst.se www.ebmpapst.se

- Schweiz

ebm-papst AG Rütisbergstraße 1t 8156 Oberhasli Phone +47 44 73220-70 Fax +41 44 73220-77 verkauf@ebmpapst.ch www.ebmpapst.ch

Amerika

- USA

ebm-papst Inc.
P.O. Box 4009
100 Hyde Road
Farmington, CT 06034
UNITED STATES
Phone +1 860 674-1515
Fax +1 860 674-8536
sales@us.ebmpapst.com
www.ebmpapst.us

Asien

- China

ebm-papst Ventilator (Shanghai) Co., Ltd No. 418, Huajing Road WaiGaoQiao Free Trade Zone 200131 Shanghai Phone +86 21 5046-0183 Fax +86 21 5046-1119 sales@cn.ebmpapst.com www.ebmpapst.com.cn

- Indien

ebm-papst India Pvt. Ltd. 26/3, G.N.T. Road Erukkencherry 600 118 Chennai Phone +91 44 26720103 Fax +91 44 25371149 sales@in.ebmpapst.com www.ebmpapst.in

www.ebmpapst.com 38064-7-8811 · 2020-11 · INT Printed in Germany

ebmpapst

the engineer's choice

ebm-papst St. Georgen GmbH & Co. KG Hauptverwaltung

78112 St. Georgen GERMANY Phone +49 7724 81-0 Fax +49 7724 81-1309 info2@de.ebmpapst.com

Hermann-Papst-Straße 1

ebm-papst St. Georgen GmbH & Co. KG Werk 7 Lauf

Industriestraße 9
91207 Lauf a. d. Pegnitz
GERMANY
Phone +49 9123 945-0
Fax +49 9123 945-145
info4@de.ebmpapst.com