Bürstenlose Innenläufer Servomotoren Baureihe ECI

Antriebslösungen | Industrielle Antriebstechnik

ebmpapst

Produktkatalog 2019-11

the engineer's choice

Antriebssysteme aus dem modularen Baukasten. Motoren mit integrierter Logik- & Leistungselektronik, wahlweise Getriebe, Geber und Bremse.

Inhaltsverzeichnis Bürstenlose Servomotoren Baureihe ECI

ebmpapst

	Seite		Seite
Informationen	4	Über ebm-papst / Green Intelligence	4
		Unsere Erfolgsgeschichte	5
		Über ECI-Servomotoren	6
		Definitionen für ECI-Servomotoren	8
		Servomotoren-ECI / Übersicht modularer Baukasten	11
ECI-Servomotoren	12	ECI-42.XX-K1	14
		ECI-63.XX-K1	18
		ECI-63.XX-K3	22
		ECI-63.XX-K4	26
		ECI-63.XX-K5	30
		ECI-80.XX-K1	34
Regelelektroniken	38	VTD-XX.XX-K3 (Drehzahl)	40
		VTD-XX.XX-K4S (Position)	42
		VTD-60.13-K5SB (CANopen)	44
		VTD-60.35-K5SB (CANopen)	46
Getriebe	48	Informationen über Getriebe	50
		NoiselessPlus 42 (Planetengetriebe)	52
		NoiselessPlus 63 (Planetengetriebe)	54
		Performax®Plus 42 (Planetengetriebe)	56
		Performax®Plus 63 (Planetengetriebe)	58
		Optimax 42 (Planetengetriebe)	60
		Optimax 63 (Planetengetriebe)	62
		EtaCrown® 52 (Kronenradgetriebe)	64
		EtaCrown® 75 (Kronenradgetriebe)	66
		EtaCrown®Plus 42 (Kronenradgetriebe)	68
		EtaCrown®Plus 63 (Kronenradgetriebe)	70
Zubehör	72	Inbetriebnahme-Tools (K4 / K5)	74
		Bremse	76
		Magnetische Gebersysteme	78
Informationen	80	Betriebsfaktor, Lebensdauer, Wirkungsgrad	80
		Vertretungen weltweit	83

Über ebm-papst.

ebm-papst ist Technologieführer für Luft- und Antriebstechnik und in vielen Branchen gefragter Engineering-Partner. Mit rund 20.000 verschiedenen Produkten bieten wir für praktisch jede Anforderung die passende Lösung. Als konsequente Weiterentwicklung unserer hocheffizienten GreenTech EC-Technologie sehen wir in der industriellen Digitalisierung die größten Zukunftschancen für unsere Kunden. Mit GreenIntelligence bietet ebm-papst schon heute intelligent vernetzte Komplettlösungen, die weltweit einzigartig sind.

Sechs Gründe, die uns zu Ihrem idealen Partner machen:

Unsere Systemkompetenz: Als Experten für hoch entwickelte Motortechnik, Elektronik und Aerodynamik bieten wir perfekte Systemlösungen aus einer Hand.

Der ebm-papst Erfindergeist: Mit 600 Ingenieuren und Technikern entwickeln wir genau die Lösung, die zu Ihren Anforderungen passt.

Unser Technologievorsprung: Mit unserer EC-Technik und GreenIntelligence verbinden wir höchste Energieeffizienz mit den Vorteilen von IoT und digitaler Vernetzung.

Persönliche Nähe zu unseren Kunden: weltweit an 49 Vertriebsstandorten.

Unser Qualitätsanspruch: Wir betreiben ein kompromissloses Qualitätsmanagement – in jedem Prozessschritt.

Gelebte Nachhaltigkeit: Wir übernehmen Verantwortung mit energiesparenden Produkten, umweltschonenden Prozessen und durch gesellschaftliches Engagement.

GreenIntelligence. Making Engineers Happy.

Warum unsere Kunden so glücklich aussehen? Weil wir ihnen mit GreenIntelligence klare Wettbewerbsvorteile im Kontext von Internet of Things und digitaler Transformation ermöglichen. Denn die intelligente Steuerung und Vernetzung von Ventilatoren, Antrieben und Systemen macht Anwendungen leistungsfähiger, Prozesse effizienter, Unternehmen erfolgreicher und deren Kunden zufriedener.

In der **industriellen Antriebstechnik** mit unterschiedlichsten Automatisierungsaufgaben braucht man vor allem einen erfahrenen Partner auf Augenhöhe. Die Drive-Experts von ebm-papst besitzen hohes Applikations-Know-how und bieten mit GreenIntelligence intelligent vernetzbare Antriebslösungen, die alle Anforderungen perfekt erfüllen.

So viel GreenIntelligence steckt im ECI- Antrieb:

- Integrierte Logik- und Leistungselektronik
- Netzwerkfähigkeit
- Master/Slave-Funktionalität
- Condition Monitoring
- Predictive Maintenance

Anna nutzt die Möglichkeiten des Industrial Internet of Things im gesamten Logistik- und Produktionsprozess.

Unsere Erfolgsgeschichte zum Markt- und Technologieführer.

- 1963 Gründung Elektrobau Mulfingen GmbH & Co. KG durch Gerhard Sturm und Heinz Ziehl.
- 1965 Entwicklung des ersten Kompaktlüfters in EC-/DC-Technik.
- 1966 Mit dem neuen 68er-Motor nimmt die Erfolgsgeschichte von ebm-papst Fahrt auf.
- 1972 In Schweden wird die erste ebm-Auslandsgesellschaft gegründet.
- 1988 Gerhard Sturm erhält das Bundesverdienstkreuz.
- 1990 Der 60-millionste Außenläuferventilator wird produziert.
- 1992 Übernahme **PAPST Motoren GmbH** in St. Georgen.
- 1997 Kauf des Werks **Landshut** (mvl).
- 2003 Umfirmierung in ebm-papst.
- 2007 Einführung des Getriebes EtaCrown®.
- **GreenTech** unser Zeichen zum Thema Energieeffizienz und Ressourcenschonung.
- Einführung einer neuen Reglergeneration (K4) für BLDC Motoren.
- ebm-papst übernimmt den Getriebespezialisten **Zeitlauf** und gewinnt den deutschen Nachhaltigkeitspreis.
- 2014 Vorstellung des BLDC Servomotors ECI 80.
- 2015 Einführung des überlastfähigen Planetengetriebes Optimax 63.
- 2016 Erweiterung der Elektronikfertigung durch das neue Produktionswerk St. Georgen Hagenmoos.
- 2017 Einführung Intelligenter Kompaktantriebe mit Bus-Schnittstelle ECI-K5.
- 2018 **GreenIntellegence** unser Zeichen zum Thema hocheffiziente und netzwerkfähige EC-Motoren.

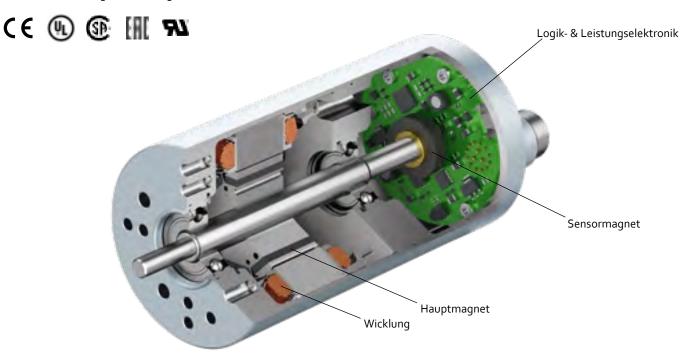
Über ECI-Servomotoren

Daten und Fakten

- 3-phasiger, elektronisch kommutierter Innenläufer mit Hochleistungsmagnet
- Leistungsbereich von 30 bis 750 Watt
- Hohe Leistungsdichte auf kleinstem Bauraum
- Große Überlastfähigkeit
- Hohe Lebensdauer
- Exzellente Laufruhe
- Rotorlageerfassung erfolgt durch Hall-Sensoren
- Kundenspezifische Wicklungsauslegungen
- Wicklungsisolation nach Isolierstoffklasse E
- Schutzart bis IP 54 nach EN 60 034-5: bis IP 65
- Verschiedene Motortypen kombinierbar mit
 Planeten- und Winkelgetrieben
- Integrierte Regelelektronik optional
- Geber- und Bremse optional

Zulassungen

- Unterstützung bei der Akkreditierung von Produkten verschiedener Wirtschaftsräume und Märkte
- Als kompetenter Partner unterstützen wir Sie gerne
- Mögliche Zulassungen sind CE, UL, CSA, EAC
- Weitere Zulassungen auf Anfrage


RoHS

Europäische Richtlinie EG Nr. 2011/65/EU (RoHS) In Bezug auf die europäische Richtlinie 2011/65/EU (RoHS) sind alle aktuellen Produkte selbstverständlich entsprechend der Einhaltung dieser Richtlinie konzipiert. Damit können wir bestätigen, dass grundsätzlich alle unsere in diesem Katalog aufgeführten Produkte der o. a. Richtlinie entsprechen.

REACH-Verordnung (EC Nr. 1907/2006)

ebm-papst ist im Sinne der REACH-Verordnung 1907/2006 ein "nachgelagerter Lieferant". Die Produkte, die Sie von uns beziehen, sind Erzeugnisse im Sinne von REACH und damit nicht registrierungspflichtig. Im eigenen Interesse und für die Gewährleistung einer hohen Produktsicherheit, verfolgen wir jedoch die Umsetzung von REACH und die daraus resultierenden Anforderungen im Sinne unserer Informationspflicht. Um die Vorgaben von REACH einzuhalten, sind wir mit allen Lieferante in Kontakt, von denen wir Chemikalien (Stoffe), Zubereitungen und Komponenten beziehen, die wir im Rahmen unseres Produktionsprozesses einsetzen. In diesem Rahmen kommt ebm-papst den Verpflichtungen nach, die sich aus der REACH-Verordnung ergeben.

Auch zu möglichen Fragen zu diesen beiden Themen, stehen wir Ihnen jederzeit zur Verfügung.

Die Angaben in diesem Katalog enthalten Spezifikatioswerte der Produkte, nicht aber die Zusicherung von Eigenschaften.

Grundlagen für alle Angaben sind die nachfolgend beschriebenen Messbedingungen. Betrieb der Motoren an einer ebm-papst Referenzelektronik bei einer <u>Umgebungstemperatur von max. 40 °C</u> bei thermisch leitender Anbingung an freistehende Metallplatte mit folgenden Abmessungen:

Für Motor ECI 42: $126 \times 126 \times 10$ mm Für Motor ECI 63: $189 \times 189 \times 10$ mm Für Motor ECI 80: $240 \times 240 \times 10$ mm

Zu beachten ist, dass eine im Motor integrierte Bremse oder ein am Motor angebautes Getriebe die Spezifikationswerte verändern

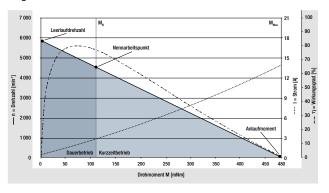
Der **Nennarbeitspunkt** ist die Grundlage für die elektromagnetische Auslegung des Motors unter dem Gesichtspunkt der maximal möglichen Dauerabgabeleistung des Motors und wird durch die hier erläuterten Nennwerte spezifiziert.

Die genannten Werte sind typische Werte für die jeweiligen Auslegungen und unterliegen zusätzlich den, in Spezifikationen oder Zeichnungen der jeweiligen Produkte angegebenen, Toleranzen. Die in den Betriebs- und Montageanleitungen angegebenen Ergänzungen und Sicherheitshinweise sind unbedingt zu beachten. Liefermöglichkeit und technische Änderungen vorbehalten.

Nennabgabeleistung P_N [W]

Die Abgabeleistung des Motors, welche er dauerhaft erzeugen kann; berechnet aus Nenndrehmoment und Nenndrehzahl. Die Festlegung des Nennarbeitspunktes erfolgt beim elektromagnetischen Entwurf der Motoren unter dem Gesichtspunkt, dass die Nennabgabeleistung annähernd der maximalen Abgabeleistung des Motors entspricht.

Nennspannung U_{BN} , U_{N} , U_{B} [V DC]


Die Gleichspannung (bzw. der Gleichspannungsbereich), die als Systemversorgungsspannung an die Kommutierungselektronik angelegt wird. Auf diese Spannung beziehen sich alle Nenndaten in den technischen Tabellen der einzelnen Motoren. Die Motoranwendung ist jedoch nicht auf diese Spannung beschränkt.

Nenndrehzahl n_N [min-1]

Die Drehzahl, bei welcher der Motor, bei einer Umgebungstemperatur von 40 °C und bei Abgabe des Nennmoments, dauernd betrieben werden kann. Sie ist ein Arbeitspunkt auf der Motorkennlinie auf Basis einer idealen Elektronik mit vernachlässigbaren Verlusten.

Nenndrehmoment M_N [mNm]

Das Moment, welches der Motor, bei einer Umgebungstemperatur von 40 °C und bei Nenndrehzahl, im Dauerbetrieb abgeben kann.

Die gezeigten Kennlinien sind idealisierte Darstellungen auf Basis der in den Tabellen angegebenen Eckwerte.

Nennstrom $I_{\rm BN}$

Der Strom, der als Versorgungsstrom der Gleichspannungsquelle entnommen wird, wenn der Motor bei Nenndrehzahl das Nennmoment abgibt.

Leerlaufdrehzahl n_L [min-1]

Die Drehzahl, die sich bei Nennspannung und unbelastetem Motor einstellt. Die theoretisch mögliche Leerlaufdrehzahl kann u. U. durch die mechanische Grenzdrehzahl eingeschränkt werden.

Leerlaufstrom I_{BL} [A]

Stellt sich bei Nennspannung und unbelastetem Motor ein; wird maßgeblich durch die Lagerreibung beeinflusst. Bei Antriebssystemen, die über eine separate Versorgung für Leistung und Logik verfügen, wird der Leerlaufstrom als I_L bezeichnet. Dieser Leerlaufstrom ist die Summe aus der Leistungsversorgung (I_{zK}) und der leistungsarmen Logikversorgung (I_B).

Definitionen für ECI-Servomotoren

Dauerblockiermoment M_{Bn0} [mNm]

Das maximal zulässige Drehmoment, mit welchem der Motor im Haltezustand dauernd belastet werden darf.

Dauerblockierstrom eff. Zuleitung I_{n0eff} [A]

Der maximal zulässige Strom, welcher im Haltezustand als Effektivwert in der Motorzuleitung fließen darf.

Dauerblockierleistung P_{Bn0} [W]

Dies ist ein Näherungswert für die spannungsunabhängige maximal zulässige Leistung (P=U x I), die im Haltezustand der Gleichspannungsquelle entnommen werden darf.

Zul. Spitzendrehmoment kurzzeitig \mathbf{M}_{max} [mNm]

Das Drehmoment, welches der Motor kurzzeitig in der Regel als **Anlaufmoment M**_A abgeben kann.

Zul. Spitzenstrom, Zuleitung I_{max} [A]

Der Strom, der als Scheitelwert in der Motorzuleitung fließen muss, um das kurzzeitige Spitzenmoment zu erreichen.

Induzierte Spannung U_{imax} [V/1000 min⁻¹]

Maximalwert der induzierten Spannung zwischen zwei Motorzuleitungen bei 1 000 min⁻¹. Sie ist ein Maß für die elektromagnetische Auslegung des Motors.

Anschlusswiderstand R, [Ohm]

Der Wicklungswiderstand, der bei 20 °C zwischen je zwei von drei Wicklungsanschlüssen gemessen wird.

Anschlussinduktivität L_v [mH]

Die mittlere Induktivität, die bei 20 °C zwischen je zwei von drei Wicklungsanschlüssen, bei einer sinusförmigen Messfrequenz von 1 kHz, gemessen wird.

Rotorträgheitsmoment J_R [kgm²x10⁻⁶]

Das Massenträgheitsmoment des Rotors und bestimmende Größe für die dynamischen Eigenschaften des Motors.

Schutzart

Die Angabe der Schutzart kennzeichnet den Schutz gegenüber Fremdkörpern (1. Ziffer) und gegenüber Feuchtigkeit bzw. Wasser (2. Ziffer).

Zul. Umgebungstemperaturbereich T_U [°C]

Definiert den Temperaturbereich für den Betrieb des Produktes, für welchen die genannten Leistungswerte gelten. Zu beachten ist hierbei, dass die zulässige Wicklungstemperatur im Motor (bei Isolier-stoffklasse E 115°C, nach EN 60 034-1) nicht überschritten wird.

Gewicht m [kg]

Die Gewichtsangabe der Liefereinheit, ohne Anbauteile oder Verpackung.

Max. Wellenbelastung F_{radial}/F_{axial} [N]

Die zulässigen Kräfte werden in radiale und axiale Belastungswerte unterteilt. Sie basieren auf den maximal zulässigen Werten des Lagersystems bei Nennbetrieb und der angegebenen Lebensdauererwartung L_{10} .

Lebensdauererwartung L₁₀

Die im Zusammenhang mit den zulässigen Lagerbelastungen genannten Werte für die Lebensdauererwartung L_{10} wurden nach der DIN ISO 281 berechnet. Basis für diese Berechnung ist, neben den genannten Werten für die Lagerbelastung, der Betrieb des Produktes bei Nennbedingungen (Nenndrehmoment, Nenndrehzahl) und einer Umgebungstemperatur von max. 40 °C. Die Lebensdauerangaben stellen keine Haltbarkeitsgarantie dar, sondern dienen lediglich als theoretische Qualitätskennzahl.

Max. Reversspannung [V DC]

Beim Aktivieren der Bremsfunktion sowie bei einem negativen Sollwertsprung, arbeitet das Produkt in einem kontrollierten Bremsbetrieb. In diesem Betriebszustand wird der Großteil der anfallenden Bremsenergie in den Zwischenkreis zurückgespeist, bis die max. Reversspannung erreicht ist und die Elektronik durch einen getakteten Bremsbetrieb ein weiteres Ansteigen über diesen Wert hinaus verhindert. Dieses Verhalten ist insbesondere bei der Auswahl der Systemversorgung zu beachten.

Sollwertvorgabe

Die Drehzahlvorgabe über eine Analogschnittstelle für DC-Spannung. Je nach Antriebsauslegung lässt sich damit die Sollwertdrehzahl im Bereich von 0 ... n_{max} einstellen, wobei der minimal mögliche Drehzahlwert (mit eingeschränkter Regelgüte) bei sinusförmiger Kommutierung bei 0 min⁻¹ und bei blockförmiger Kommutierung bei ca. 50 ... 100 min⁻¹ liegt (relevant nur für Antriebe mit integrierter Betriebselektronik).

Empfohlener Drehzahlbereich [min-1]

Der Drehzahlregelbereich innerhalb dessen die in der Systemspezifikation angegebene Drehzahlregelgenauigkeit sicher eingehalten wird.

Anlaufdrehmoment [mNm]

Das Moment, welches der Motor auf Basis seiner elektromagnetischen Motoreigenschaften und der eingestellten Strombegrenzung kurzzeitig maximal erzeugen kann.

Effektives Drehmoment M_{eff} [mNm]

Für einen Zyklusbetrieb (z. B. Betriebsart "S5" – Aussetzbetrieb mit Einfluss der Anlaufverluste und der Verluste infolge elektrischer Abbremsung auf die Erwärmung) wird das einem Dauerbetrieb (Betriebsart "S1") entsprechende effektive Drehmoment nach folgender Formel bestimmt:

$$M_{eff} = \sqrt{\frac{M_{A2} \cdot t_A + M_{L^2} \cdot t_B + M_{Br^2} \cdot t_{Br}}{t_A + t_B + t_{Br} + t_{St}}}$$

 $egin{array}{lll} M_A & Anlaufmoment & M_{Br} & Bremsmoment \\ t_A & Hochlaufzeit & t_{Br} & Bremszeit \\ M_L & Lastmoment & t_{St} & Stillstandzeit \\ \end{array}$

t_B Belastungszeit

Bei Umgebungstemperaturen bis 40 °C darf dieses effektive Drehmoment nicht größer als das für den ausgewählten Motor mit dem im Katalog angegebenen Nennmoment MN sein. Für den Aussetzbetrieb (Betriebsart "S3" mit tr = relative Einschaltdauer) gilt das zulässige Lastmoment:

$$M_L = M_N \cdot \sqrt{\frac{100}{t}}$$

Systemauslegung

Für die Zusammenstellung eines Antriebssystems aus Motor und Betriebselektronik ist zu berücksichtigen, dass die für den Motor zulässigen Werte durch die Elektronik nicht überschritten werden. Ebenso ist der in den Kommutierungssequenzen dargestellte Zusammenhang zwischen der Abfolge der Hall-Signale und den zugehörigen Schaltzeitpunkten und Schaltzuständen der Endstufe an den Phasenzuleitungen zu beachten, um einen optimalen Betrieb des Motors zu erreichen.

Für den Betrieb und die Lagerung der Produkte bei, von den Standardbedingungen abweichenden Umweltbedingungen, ist mit dem Hersteller Rücksprache zu halten.

ECI-Servomotoren *Übersicht modularer Baukasten*

Bürstenlose Servomotoren ECI		ECI-42.20-K1 (S. 14)	ECI-42.40-K1 (5. 14)	ECI-63.20-K1 (S. 16)	ECI-63.40-K1 (S. 16)	ECI-63.60-K1 (S. 16)	ECI-63.20-K3/4/5(5.22)	ECI-63.40-K3/4/5 (5. 22)	ECI-63.60-K3/4/5 (5. 22)	ECI-80.20-K1 (S. 34)	ECI-80.40-K1 (S. 34)	ECI-80.60-K1 (S. 34)
U _N	V DC	24	24	24	24	24	24	24		24	24	
O _N	V DC	48	48	48	48	48	48	48	48	48	48	48
M_N	mNm	110	220	360	670	880	425	600	850	700	1 200	1800
P	W	46	92	150	280	370	178	251	356	293	503	754
n _N	min ⁻¹	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000
	mm	104	124	106	126	146	112	132	152	96	116	136
d	mm	42	42	63	63	63	63	63	63	80	80	80
Regelelektroniken (inte	griert)											
K1 (Hall-Sensorik)		•	0	•	•	0				•	•	•
K3 (Drehzahl)							•	0	0			
K4 (Position)							•	0	0			
K5 (CANopen)							•	•	•			
Regelelektroniken (exte												
VTD-XX.XX-K3 (Drehza		•	•	•	•	•						
VTD-XX.XX-K4S (Position	on) (S.42)	•	•	•	•	•				•	•	•
VTD-60.13-K5SB (CAN	open) (S. 44)	•	•	•	•	•						
VTD-60.35-K5SB (CAN	open) (S. 46)			•	•	•				•	•	•
Getriebe												
NoiselessPlus 42 (Plane	tengetriebe) (S. 52)	•	•									
NoiselessPlus 63 (Plane	tengetriebe) (S. 54)			•	•	•	•	•	•			
Performax®Plus 42 (Plan	netengetriebe) (S. 56)	•	•									
Performax®Plus 63 (Plan	netengetriebe) (S. 58)			•	•	•	•	•	•	•	•	•
Optimax 42 (Planetenge	etriebe) (S. 60)	•	•									
Optimax 63 (Planetenge	etriebe) (S. 62)			•	•	•	•	•	•	•	•	•
EtaCrown® 52 (Kronenra	adgetriebe) (S. 64)	•	•									
EtaCrown® 75 (Kronenra	adgetriebe) (S. 66)			•	•	•	•	•	•			
EtaCrown®Plus 42 (Kror	nenradgetriebe) (S. 68)	•	•									
EtaCrown®Plus 63 (Kror	nenradgetriebe) (S. 70)			•	•	•	•	•	•			
Bremsen												
RFK (Ruhestrom, Feder	kraft) (S. 76)	•	•	•	•	•	•	•	•			
Gebersysteme												
Magnetische Gebersyst	eme (S. 78)	•	•	•	•	•				•	•	•
Änderungen vorbehalten		Stand	ardtyp	O Vorzu	gstyp: in 4	8 Std. versa	ndfertig					

Mit unseren Vorzugstypen bieten wir eine Auswahl an Motoren und Getriebemotoren, die innerhalb 48 Stunden versandfertig zur Verfügung stehen. Die Vorzugstypen können mit einer Bestellmenge von maximal 20 Produkten pro Auftrag bezogen werden.

Mit Standardtypen bezeichnen wir eine große Auswahl an Motoren und Getriebemotoren, die über festgelegte Bestellnummern mit marktüblichen Lieferzeiten bezogen werden können.

Auf Anfrage beschreibt weitere Produkte, die für Projektbedarfe zur Verfügung stehen. Diese Produkte sind grundsätzlich verfügbar, aber noch nicht mittels angelegter Materialnummer bestellbar. Wir behalten uns die Anlage der notwendigen Bestellnummer nach technischer und wirtschaftlicher Prüfung des

ECI-Servomotoren

Servomotoren-ECI

ebmpapst

the engineer's choice

	Seite
ECI-42.XX-K1	14
ECI-63.XX-K1	18
ECI-63.XX-K3	22
ECI-63.XX-K4	26
ECI-63.XX-K5	30
ECI-80.XX-K1	34

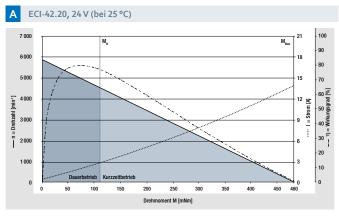
Servomotor ECI-42.XX-K1

Mehrunter

www.ebmpapst.com/eci-motoren

Beschreibung

- Hochdynamischer 3-phasiger Servomotor in EC-Technologie
- Geringes Rastmoment
- Robustes und geräuschoptimiertes Kugellagersystem für hohe Lebensdauer
- Hoher Wirkungsgrad sowie hohe Leistungsdichte bei kompakter Bauform
- Grundmotor mit Elektronikmodul K1 für Betrieb mit externer Regelelektronik
- Mechanischer Aufbau und Schnittstellen, ausgelegt für modularen Systembaukasten
- Schutzart IP 54 und Anschluss über Steckersystem


Тур		ECI-42.20-K1-B00	ECI-42.20-K1-D00	ECI-42.40-K1-B00	ECI-42.40-K1-D00
Kennlinie		Α		В	
Nennspannung (U _N)	V DC	24	48	24	48
Nenndrehzahl $(n_N)^{2)}$	min ⁻¹	4 000	4 000	4 000	4 000
Nenndrehmoment (M _N) ²⁾	mNm	110	110	220	220
Nennstrom (I _N) ²⁾	Α	2,50	1,30	5,10	2,60
Nennabgabeleistung (P _N) ²⁾	W	46,0	46,0	92,0	92,0
Anlaufmoment (M _A)	mNm	480	480	960	960
Zul. Spitzenstrom (I _{max}) ³⁾	Α	14,0	7,00	21,0	11,0
Leerlaufdrehzahl (n _L)	min ⁻¹	5 900	5 900	5 700	5 700
Leerlaufstrom (I _L)	Α	0,33	0,10	0,40	0,20
Dauerblockiermoment (M _{NO})	mNm	100	100	200	200
Empf. Drehzahlregelbereich	min ⁻¹	0 5 000	0 5 000	0 5 000	0 5 000
Rotorträgheitsmoment (J _R)	kgm² x10 ⁻⁶	3,42	3,42	6,70	6,70
Motorkonstante (K _E)	mVs/rad	35,2	84,2	42,8	83,9
Anschlusswiderstand (R _v)	Ω	0,85	3,20	0,39	1,50
Anschlussinduktivität (L _v)	mH	1 100	450	500	184
Schutz bei Überlast			Ist über die Ansteuere	lektronik zu realisieren	
Zul. Umgebungstemperaturbereich (T _U)	°C	0 +40	0 +40	0 +40	0 +40
Material Nr.		932 4220 130	932 4220 131	932 4240 130	932 4240 131

 $^{^{11}}$ Schutzartangabe bezieht sich auf den eingebauten Zustand mit Abdichtung an der Flanschseite 21 Bei T_0 max. 40 $^{\circ}$ C

³⁾ Zulässige Spitzenstromdauer: max. 3 Sek. – kann erst nach vollständiger Abkühlung wiederholt werden

Vorzugstyp in 48 Stunden versandfertig

Kennlinie 48 V auf Anfrage

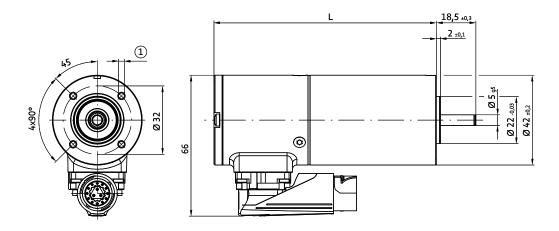
Kennlinie 48 V auf Anfrage

Modularer Baukasten Bremsensystem Grundmotor Planetengetriebe Federkraftbremse RFK 0.3 Nm Seite 52 NoiselessPlus 42 Seite 76 Performax®Plus 42 Seite 56 Winkelgetriebe Gebersystem EtaCrown® 52 Seite 64 magnetisch Seite 78 inkremental EtaCrown®Plus 42 Seite 68 Empfohlene externe Regelelektronik VTD-XX.XX-K3 Drehzahl Seite 40

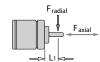
Bei Motor-Getriebe-Kombinationen kann, abhängig von der Auswahl der Einzelkomponenten, das zulässige Drehmoment (Getriebe) überschritten bzw. nicht erreicht werden.

Position Seite 42

Position Seite 44

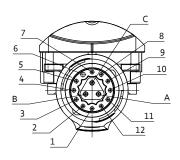


VTD-XX.XX-K4S


VTD-60.13-K5SB

Technische Zeichnung ohne Bremse

Typ L ECI-42.20 104±0,4 ECI-42.40 124±0,4

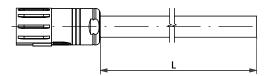


① 4 x Für gewindefurchende Schrauben M3 nach DIN7500, Einschraubtiefe max. 9,5 mm

Zulässige Wellenbelastung

Elektrischer Anschluss ohne Bremse

	Pin	Farbe	Anschluss	Funktion	empfohlene AWG
	1	weiss	Hall A	Hall Signal A	
	2	braun	Hall B	Hall Signal B	
Signal	3	grün	Hall C	Hall Signal C	23
S	4	gelb	+12V	Versorgungsspannung Hall	
	5	grau	GND	Ground Hall	
	6	rosa	leer	leer	
	7	blau	Α	Geber Kanal A	
	8	rot	/A	Geber Kanal A negiert	
Geber	9	schwarz	В	Geber Kanal B	
Ge	10	violett	/B	Geber Kanal B negiert	
	11	grau-rosa	+5V	Versorgungsspannung Geber	
	12	rot-blau	GND	Ground Geber	
ng	Α	grau	U	Wicklungsanschluss U	
Leistung	В	braun	V	Wicklungsanschluss V	16
Fe	С	schwarz	W	Wicklungsanschluss W	


Änderungen vorbehalten

Elektrischer Anschluss mit Bremse siehe Seite 76

Elektrischer Anschluss Kabel

Maßangaben in mm

Тур	L	Material-Nr.
Kabel (12 + 3 Pins)	1 000 ± 30	992 0160 200
Kabel (12 + 3 Pins)	3 000 ± 30	992 0160 201

Bei Eigenkonfektion Bezug Einzelteile Stecker Fa. Intercontec:

 $Intercontec\,Stecker\,Serie\,915\,mit\,Schnellverschluss\,\varnothing\,10,5-12\,mm,\,(\,Material-Nr.\,ESTA205NN00340003000)$

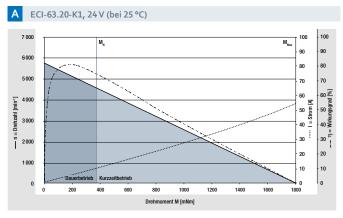
 $Intercontec\ Crimpkontakt-Buchse\ 3\ x,\ Power,\ Crimpbereich\ 0,5-1,5\ mm^2\ (Material-Nr.\ 60.251.11)$

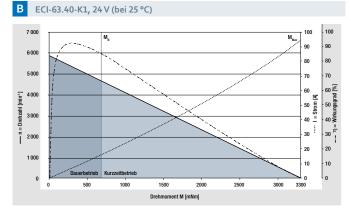
 $Intercontec \ Crimpkontakt-Buchse\ 12\ x, Signal, Crimpbereich\ 0,05-0,75\ mm^2 (Material-Nr.\ 60.252.11)$

Servomotor ECI-63.XX-K1

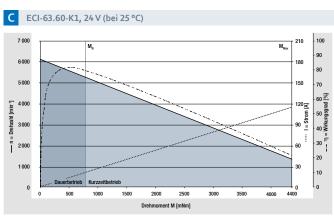
www.ebmpapst.com/eci-motoren

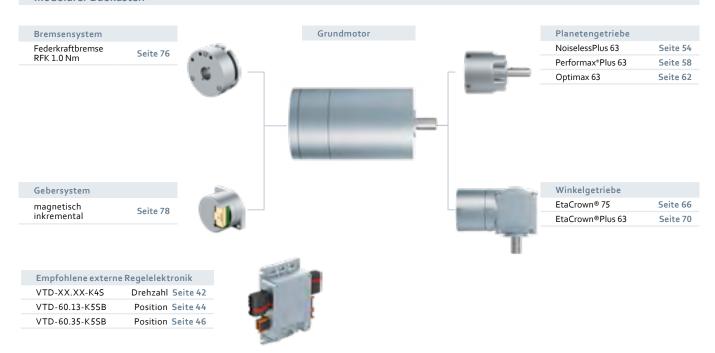
Beschreibung


- Hochdynamischer 3-phasiger Innenläufermotor in EC-Technologie
- Geringes Rastmoment
- Robustes und geräuschoptimiertes Kugellagersystem für hohe Lebensdauer
- Hoher Wirkungsgrad sowie hohe Leistungsdichte bei kompakter Bauform
- Grundmotor mit Elektronikmodul K1 für Betrieb mit externer Regelelektronik
- Mechanischer Aufbau und Schnittstellen, ausgelegt für modularen Systembaukasten
- Schutzart IP 40 / IP 54 und Anschluss über Steckersystem


Тур		ECI-63.20-K1 -B00	ECI-63.20-K1 -D00	ECI-63.40-K1 -B00	ECI-63.40-K1 -D00	ECI-63.60-K1 -B00	ECI-63.60-K1 -D00
Kennlinie		Α		В			C
Nennspannung (U _N)	V DC	24	48	24	48	24	48
Nenndrehzahl $(n_N)^{2)}$	min ⁻¹	4 000	4 000	4 000	4 000	4 000	4 000
Nenndrehmoment (M _N) ²⁾	mNm	360	360	670	670	800	880
Nennstrom (I _N) ²⁾	Α	8,50	4,50	14,0	6,50	17,6	8,50
Nennabgabeleistung (P _N) ²⁾	W	150	150	280	280	335	370
Anlaufmoment (M _A)	mNm	1 800	1 800	3 300	3 300	5 300	4 400
Zul. Spitzenstrom (I _{max}) ³⁾	Α	55	30	95	45	150	57
Leerlaufdrehzahl (n _L)	min ⁻¹	5 800	6 800	5 900	5 900	6100	6 000
Leerlaufstrom (I _L)	Α	0,50	0,30	0,70	0,32	1,30	0,45
Empf. Drehzahlregelbereich	min ⁻¹	0 5 000	0 5 000	0 5 000	0 5 000	0 5 000	0 5 000
Rotorträgheitsmoment (J _R)	kgm² x10 ⁻⁶	19,0	19,0	38,0	38,0	57,0	57,0
Motorkonstante (K _E)	mVs/rad	41,4	73,3	40,4	83,8	40,4	83,8
Anschlusswiderstand (R _v)	Ω	0,14	0,42	0,08	0,24	0,04	0,15
Anschlussinduktivität (L _v)	mH	260	880	140	570	90,0	330
Schutz bei Überlast			lst	über die Ansteuere	lektronik zu realisi	eren	
Zul. Umgebungstemperaturbereich (T _U)	°C	0 +40	0 +40	0 +40	0 +40	0 +40	0 +40
Gewicht	kg	0,90	0,90	1,20	1,20	1,50	1,50
Material Nr. (Litzenausführung) 1)	IP 40	932 6320 103	932 6320 105	932 6340 103	932 6340 105	932 6360 106	932 6360 108
Material Nr. (Steckerausführung) 1)	IP 54	auf Anfrage					

¹⁾ Schutzartangabe bezieht sich auf den eingebauten Zustand mit Abdichtung an der Flanschseite Die Wellengeometrie bei der IP54 Ausführung ist abweichend zu der dargestellten Zeichnung ²⁾ Bei T_U max. 40 °C


 $^{^{3)} \} Zul{\ assige Spitzenstrom dauer: max.} \ 1 \ Sek. - kann \ erst \ nach \ vollst{\ and iger} \ Abk{\ \ddot{u}hlung} \ wiederholt \ werden$

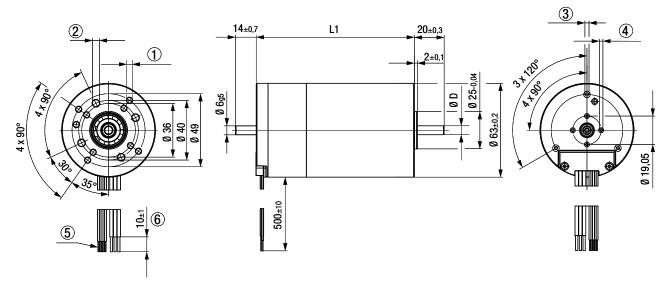

Kennlinie 48 V auf Anfrage

Kennlinie 48 V auf Anfrage

Kennlinie 48 V auf Anfrage

Modularer Baukasten

Bei Motor-Getriebe-Kombinationen kann, abhängig von der Auswahl der Einzelkomponenten, das zulässige Drehmoment (Getriebe) überschritten bzw. nicht erreicht werden.

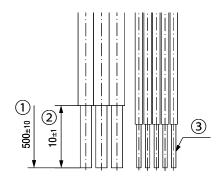

Technische Zeichnung (Standardausführung, Motor mit Litzenanschluss)

 Typ
 L
 ØD

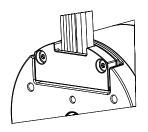
 ECI-63.20
 $106,1\pm0,4$ 6_{g5}

 ECI-63.40
 $126,1\pm0,4$ 6_{g5}

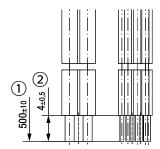
 ECI-63.60
 $146,1\pm0,4$ 10_{q5}


- $\textcircled{1}\ \ 8$ x für gewindefurchende Schrauben M4 nach DIN7500, Einschraubtiefe max. 10 mm
- ② 4 x für gewindefurchende Schrauben M5 nach DIN7500, Einschraubtiefe max. 10 mm
- 3×10^{-2} X yr Gewindefurchende Schrauben M3 nach DIN7500, Einschraubtiefe max. 6 mm
- $\ \, 4\times f\ddot{u}r$ gewindefurchende Schrauben M2,5 nach DIN7500, Einschraubtiefe max. 6 mm
- 5 5x Aderendhülsen
- 6 verzinnt

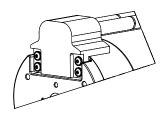
Fradial Zulässige Wellenbelastung


Zul. gleichzeitige Wellenbelastungen bei Nenndrehzahl und einer Lebensdauererwartung L_{10} (im Nennbetrieb) von 20 000 h (bei $T_{\rm U}$ max. 40 °C)

Elektrischer Anschluss


- 1 Länge ab Motor
- 2 verzinnt
- 3 5x Aderendhülsen

	Litzenfarbe	Anschluss	Funkion
	grün	Hall A	Hall Signal A
	weiß	Hall B	Hall Signal B
Signal	grau	Hall C	Hall Signal C
S	rot	U _B	Betriebsspannung
	schwarz	GND	Masse
ng	braun	Phase U	Wicklungsanschluss U
Leistung	violett	Phase V	Wicklungsanschluss V
Le	gelb	Phase W	Wicklungsanschluss W



Elektrischer Anschluss Stecker (Steckerausführung auf Anfrage)

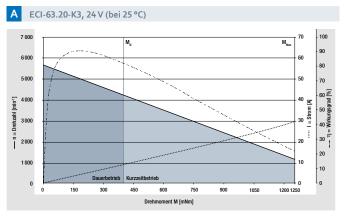
Maßangaben in mm

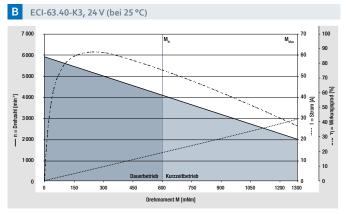
- 1 Länge ab Motor
- 2 verzinnt

	Farbe	Anschluss	Kennung
	grün	Hall A	Hall Signal A
	weiss	Hall B	Hall Signal B
Signal	grau	Hall C	Hall Signal C
S	rot	+12V	Versorgungsspannung Hall
	rotblau	GND	Ground Geber
ng	schwarz	U	Wicklungsanschluss U
Leistung	braun	V	Wicklungsanschluss V
Le	blau	W	Wicklungsanschluss W

Servomotor ECI-63.XX-K3

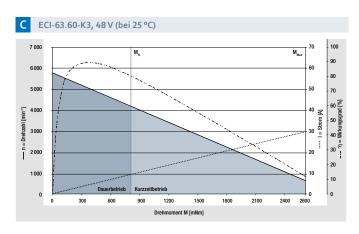
www.ebmpapst.com/eci-motoren


Beschreibung

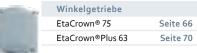

- Antrieb mit komplett integrierter Betriebs- und Regelelektronik K3
- Geringes Rastmoment
- Integrierte Drehzahlregelung
- Schnittstelle mit analogen und digitalen Steuereingängen
- Freischaltung der Endstufe über digitalen "Hardware-Enable"
- Feldorientierte Regelung
- 15-poliger Anschlussstecker

Тур		ECI-63.20-K3 -B00	ECI-63.20-K3 -D00	ECI-63.40-K3 -B00	ECI-63.40-K3 -D00	ECI-63.60-K3
Kennlinie		Α		В		C
Nennspannung (U _N)	V DC	24	48	24	48	48
Zul. Versorgungsspannungsbereich (U_{ZK})	V DC	18 30	18 53	18 30	18 53	18 53
Max. Reversspannung	V DC	35	58	35	58	58
Nenndrehzahl (n _N)	min ⁻¹			4 000		
Nenndrehmoment (M _N) ²⁾	mNm	425	450	600	600	850
Nennstrom (I _N) ²⁾	Α	8,50	5,40	12,3	7,20	8,60
Nennabgabeleistung (P _N) ²⁾	W	178	188	251	314	356
Anlaufmoment (M _A)	mNm	1 480	1 890	1 500	3 000	2 550
Leerlaufdrehzahl (n _L)	min ⁻¹	5 800	5 800	5 900	5 800	6 000
Leerlaufstrom (I _L)	Α	0,50	0,50	0,90	0,50	0,60
Empf. Drehzahlregelbereich	min ⁻¹			0 5 000		
Sollwertvorgabe				Analog (0 10V)		
Rotorträgheitsmoment (J _R)	kgm² x10 ⁻⁶	19	19	38	38	57
Blockierschutzfunktion	Ω			thermisch		
Schutz bei Überlast				Integriert		
Zul. Umgebungstemperaturbereich (T_{υ})	°C			0 +40		
Gewicht	kg	0,85	0,85	1,15	1,15	1,50
Material Nr.	IP 40			Auf Anfrage		
Material Nr.	IP 54			Auf Anfrage		

¹⁾ Schutzartangabe bezieht sich auf den eingebauten Zustand mit Abdichtung an der Flanschseite Die Wellengeometrie bei der IP54 Ausführung ist abweichend zu der dargestellten Zeichnung ²⁾ Bei T_∪ max. 40 °C



Kennlinie 48 V auf Anfrage


Kennlinie 48 V auf Anfrage

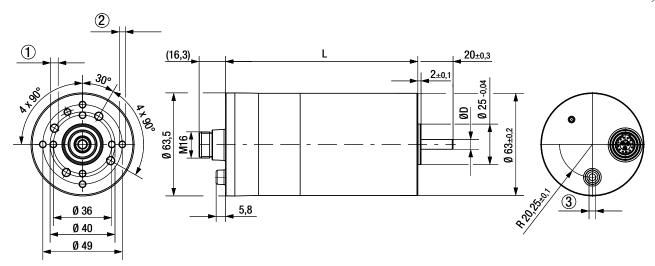
Modularer Baukasten

Planetengetriebe	
NoiselessPlus 63	Seite 54
Performax®Plus 63	Seite 58
Optimax 63	Seite 62

Kabel

Anschlusskabel sind separat zu bestellen Seite 25

Bei Motor-Getriebe-Kombinationen kann, abhängig von der Auswahl der Einzelkomponenten, das zulässige Drehmoment (Getriebe) überschritten bzw. nicht erreicht werden.

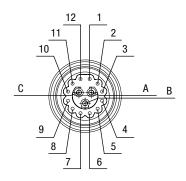

Technische Zeichnung Maßangaben in mm

 Typ
 L
 ØD

 ECI-63.20
 $118,5\pm0,4$ 6_{gS}

 ECI-63.40
 $138,5\pm0,4$ 6_{gS}

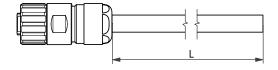
 ECI-63.60
 $158,5\pm0,4$ 10_{qS}

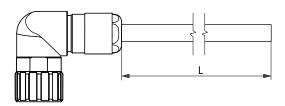

- ① 4x für gewindefurchende Schrauben M5 nach DIN7500, Einschraubtiefe max. 10 mm
- $\textcircled{2}\ \ 8$ x für gewindefurchende Schrauben M4 nach DIN7500, Einschraubtiefe max. 10 mm
- ③ M5, 5 mm

Zulässige Wellenbelastung

 $\begin{array}{lll} F_{axial} \colon & 150 \text{ N} & \text{ZUI. gleichzeitige Wellenbelastungen} \\ F_{radial} \colon & 150 \text{ N} & \text{bei Nenndrehzahl und einer Lebensdauererwartung L}_{10} \left(\text{im Nennbetrieb} \right) \\ L_{1} \colon & 20 \text{ mm} & \text{von 20 000 h (bei T}_{\text{U}} \text{ max. 40 °C)} \end{array}$

Elektrischer Anschluss


	Pin	Litzenfarbe	Anschluss	Funktion	empf. AWG	
	1	weiß	D-IN-A	Digitaler Eingang A		
	2	braun	D-IN-B	Digitaler Eingang B		
	3	grün	D-IN-1	Digitaler Eingang 1		
	4	gelb	D-IN-2	Digitaler Eingang 2 Analog 0 10 V / Bremse		
_	5	grau	D-OUT-1	Digitaler Ausgang 1		
Signal	6	rosa	D-OUT-2	Digitaler Ausgang 2	24	
S	7	blau	D-OUT-3	Digitaler Ausgang 3		
	8	rot	A-IN-1	0 10 V (differentiell)		
	9	schwarz	A-IN-GND	Ground für Analog IN 1 für differientiell		
	10	violett	RS485 A (+)	ProgrBus		
	11	grau/rosa	RS485 B (-)	ProgrBus		
	12	rot/blau	U_{Logik}	Logikversorgung (24 V)		
ng	Α	grau	Ballast	Ballastwiderstand		
Leistung	В	braun	$U_{z K}$	Leistungsversorgung	16	
E.	C	schwarz	GND	Leistung- / Signal-Ground		


Elektrischer Anschluss Kabel

Maßangaben in mm

Тур	L	Material-Nr.
Kabel (12 + 3 Pins)	1 000 ± 30	992 0160 034
Kabel (12 + 3 Pins)	3 000 ± 30	992 0160 035

Тур	L	Material-Nr.
Kabel (12 + 3 Pins)	1 000 ± 30	992 0160 036
Kabel (12 + 3 Pins)	3 000 ± 30	992 0160 037

Bei Eigenkonfektion Bezug Einzelteile Stecker Fa. Hummel:

Hummel Kabelsteckverbinder M16 für Kabel Ø 8 - 11 mm, Anzugsmoment: 5 Nm (Material-Nr. 7.810.500.000)

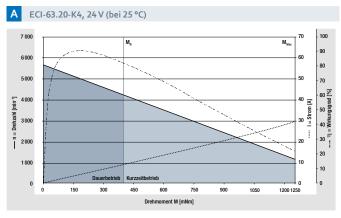
 $Hummel\ Crimpeins atz\ Serie\ M16,12+3\ Buchse\ mit\ Sondercodierung\ (Material-Nr.\ 7K11886034)$

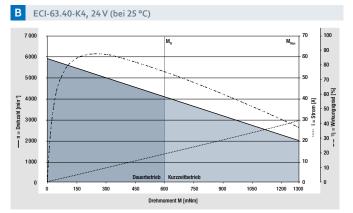
 $Hummel\ Crimpkontakt-Buchse\ 3\,x,\ Power,\ Crimpbereich\ 0,5-1,5\ mm^2\ (Material-Nr.\ 7.010.981.202)$

Hummel Crimpkontakt-Buchse 12 x, Signal, Crimpbereich 0,08 - 0,34 mm² (Material-Nr. 7.010.980.802)

Servomotor ECI-63.XX-K4

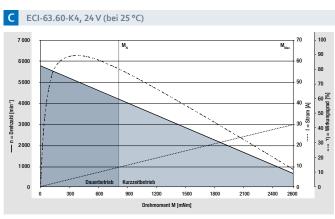
www.ebmpapst.com/eci-motoren


Beschreibung

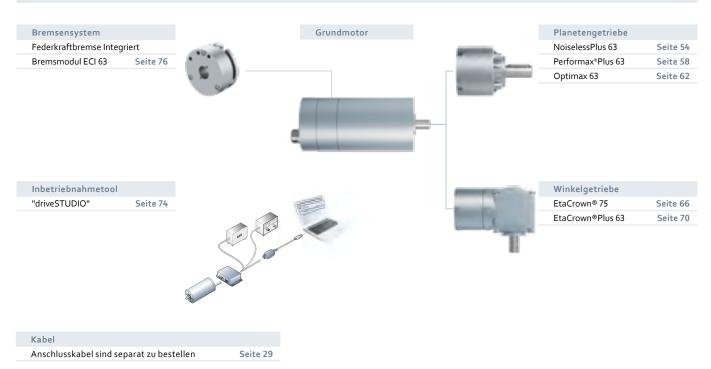

- Antrieb mit integriertem 4Q Regler
- Drehzahl-, Drehmoment- oder Positioniermodus möglich
- Auswahl der Betriebsmodi und Parametrierung über RS485
- Umfangreiche Schnittstelle mit diversen Ein- und Ausgängen
- Integrierte Bremschopperfunktion
- Drehzahlsollwerte von n = 0 mit Haltemoment bis 5 000 U/min möglich
- Exzellentes Regelverhalten durch feldorientierte Regelung mit
- Hoher Wirkungsgrad sowie hohe Leistungsdichte bei kompakter Bauform
- Anwenderfreundliche Parametrierung über PC-Software "driveSTUDIO"

Тур		ECI-63.20-K4 -B00	ECI-63.20-K4 -D00	ECI-63.40-K4 -B00	ECI-63.40-K4 -D00	ECI-63.60-K4 -D00
Kennlinie		Α		В		C
Nennspannung (U _N)	V DC	24	48	24	48	48
Zul. Versorgungsspannungsbereich (U_{ZK})	V DC	18 30	18 53	18 30	18 53	18 53
Max. Reversspannung	V DC	35	58	35	58	58
Nenndrehzahl (n _N)	min ⁻¹	4 000	4 000	4 000	4 000	4 000
Nenndrehmoment (M _N) ²⁾	mNm	425	450	600	750	850
Nennstrom (I _N) ²⁾	Α	8,50	5,40	12,3	7,20	8,60
Nennabgabeleistung (P _N) ²⁾	W	178	188	251	314	356
Anlaufmoment (M _{max})	mNm	1 480	1 890	1 500	3 000	2 550
Leerlaufdrehzahl (n _L)	min ⁻¹	5 800	5 800	5 900	5 800	6 000
Leerlaufstrom (I _L)	Α	0,50	0,50	0,90	0,50	0,60
Empf. Drehzahlregelbereich	min ⁻¹	0 5 00	0 5 000	0 5 000	0 5 000	0 5 000
Sollwertvorgabe			Analo	og / PWM / Frequenz / D	igital	
Rotorträgheitsmoment (J _R)	kgm² x10 ⁻⁶	19	19	38	38	57
Blockierschutzfunktion	Ω			thermisch		
Schutz bei Überlast				Integriert		
Zul. Umgebungstemperaturbereich (T _u)	°C	0 +40	0 +40	0 +40	0 +40	0 +40
Gewicht	kg	0,85	0,85	1,15	1,15	1,50
Material Nr.	IP 40	932 6320 403	932 6320 405	932 6340 403	932 6340 405	932 6360 405
Material Nr.	IP 54	932 6320 400	932 6320 402	932 6340 400	932 6340 402	932 6360 402

¹⁾ Schutzartangabe bezieht sich auf den eingebauten Zustand mit Abdichtung an der Flanschseite Die Wellengeometrie bei der IP54 Ausführung ist abweichend zu der dargestellten Zeichnung ²⁾ Bei T_U max. 40 °C

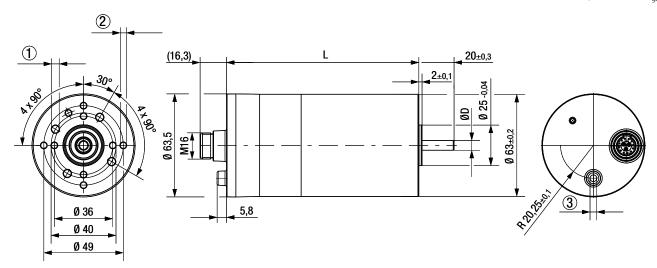





Kennlinie 48 V auf Anfrage

Kennlinie 48 V auf Anfrage

Kennlinie 48 V auf Anfrage

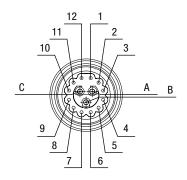


Bei Motor-Getriebe-Kombinationen kann, abhängig von der Auswahl der Einzelkomponenten, das zulässige Drehmoment (Getriebe) überschritten bzw. nicht erreicht werden.

Technische Zeichnung Maßangaben in mm

> ØD Тур L ECI-63.20 118,5±0,4 6_{g5} ECI-63.40 138,5±0,4 6_{g5} ECI-63.60 158,5±0,4 10_{q5}

- $\textcircled{1}\ \ 4$ x für gewindefurchende Schrauben M5 nach DIN7500, Einschraubtiefe max. 10 mm
- $\textcircled{2}\ \ 8$ x für gewindefurchende Schrauben M4 nach DIN7500, Einschraubtiefe max. 10 mm
- ③ M5, 5 mm



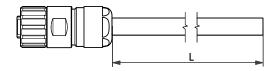
Zulässige Wellenbelastung

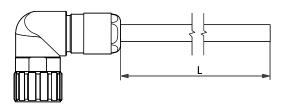
 $\mathsf{F}_{\mathsf{radial}}$:

150 N Zul. gleichzeitige Wellenbelastungen bei Nenndrehzahl und einer Lebens-dauererwartung L₁₀ (im Nennbetrieb) von 20 000 h (bei T_U max. 40 °C)

Elektrischer Anschluss

	Pin	Litzenfarbe	Anschluss	Funktion	empf. AWG
	1	weiß	D-IN-A	Digitaler Eingang A	
	2	braun	D-IN-B	Digitaler Eingang B	
	3	grün	D-IN-1	Digitaler Eingang 1	
	4	gelb	D-IN-2	Digitaler Eingang 2 Analog 0 10 V / Bremse	
_	5	grau	D-OUT-1	Digitaler Ausgang 1	
Signal	6	rosa	D-OUT-2	Digitaler Ausgang 2	24
S	7	blau	D-OUT-31)	Digitaler Ausgang 3	
	8	rot	A-IN-1	0 10 V (differentiell)	
	9	schwarz	A-IN-GND	Ground für Analog IN 1 für differientiell	
	10	violett	RS485 A (+)	ProgrBus	
	11	grau/rosa	RS485 B (-)	ProgrBus	
	12	rot/blau	U_{Logik}	Logikversorgung (24 V)	
ng	Α	grau	Ballast	Ballastwiderstand	
Leistung	В	braun	U_{zK}	Leistungsversorgung	16
Le	C	schwarz	GND	Leistung- / Signal-Ground	


1) Ausgang (D-OUT 3) ist ausschließlich beim ECI-63.XX-K4 verfügbar


Elektrischer Anschluss Kabel

Maßangaben in mm

Тур	L	Material-Nr.
Kabel (12 + 3 Pins)	1 000 ± 30	992 0160 034
Kabel (12 + 3 Pins)	3 000 ± 30	992 0160 035

Тур	L	Material-Nr.
Kabel (12 + 3 Pins)	1 000 ± 30	992 0160 036
Kabel (12 + 3 Pins)	3 000 ± 30	992 0160 037

Bei Eigenkonfektion Bezug Einzelteile Stecker Fa. Hummel:

Hummel Kabelsteckverbinder M16 für Kabel Ø 8 - 11 mm, Anzugsmoment: 5 Nm (Material-Nr. 7.810.500.000)

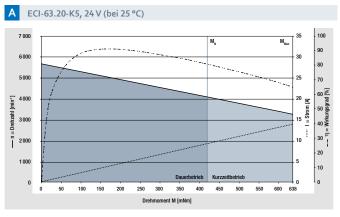
Hummel Crimpeinsatz Serie M16, 12 + 3 Buchse mit Sondercodierung (Material-Nr. 7K11886034)

Hummel Crimpkontakt-Buchse 3 x, Power, Crimpbereich 0,5 - 1,5 mm² (Material-Nr. 7.010.981.202)

Hummel Crimpkontakt-Buchse 12 x, Signal, Crimpbereich 0,08 - 0,34 mm² (Material-Nr. 7.010.980.802)

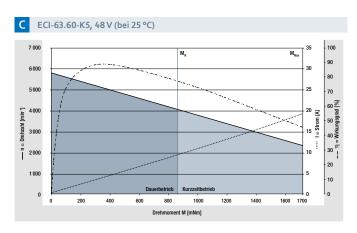
Servomotor ECI-63.XX-K5

www.ebmpapst.com/eci-motoren


Beschreibung

- Antrieb mit integrierter Betriebs- und Regelelektronik "K5" mit CANopen-Kommunikationsschnittstelle
- Sinuskommutierung der Antriebe mit feldorientierter Regelung
- Drehzahlregelbereich bis n = 0 U/min mit Haltemoment bis 5 000 U/min möglich
- Unterschiedliche Betriebsmodi nach DS 402 (Drehzahl, Drehmoment, Positionierung) über Software möglich
- Steckeranschlüsse in M16 und M12 in abgedichtetem Industriestandard
- Schnittstelle mit analogen und digitalen Steuereingängen

Тур		ECI-63.20-K5 -B00	ECI-63.20-K5 -D00	ECI-63.40-K5 -B00	ECI-63.40-K5 -D00	ECI-63.60-K
Kennlinie		Α		В		C
Nennspannung (U _N)	V DC	24	48	24	48	48
Zul. Versorgungsspannungsbereich (U _{ZK})	V DC	8 30	18 52	18 30	18 52	18 52
Max. Reversspannung	V DC	35	58	35	58	58
Nenndrehzahl (n _N) ²⁾	min ⁻¹			4 000		
Nenndrehmoment (M _N) ²⁾	mNm	425	450	600	600	850
Nennstrom (I _N) ²⁾	Α	8,50	5,40	12,3	7,20	8,60
Nennabgabeleistung (P _N) ²⁾	W	178	188	251	314	356
Anlaufmoment (M _A)	mNm	1 275	1 350	1 50	2 250	2 550
Leerlaufdrehzahl (n _L)	min ⁻¹	5 800	5 800	5 900	5 800	6 000
Leerlaufstrom (I _L)	Α	0,50	0,20	0,90	0,46	0,48
Empf. Drehzahlregelbereich	min ⁻¹			0 4 00		
Rotorträgheitsmoment (J _R)	kgm² x10 ⁻⁶	19	19	38	38	57
Blockierschutzfunktion	Ω			thermisch		
Schutz bei Überlast				Integriert		
Zul. Umgebungstemperaturbereich (T _u)	°C			0 +40		
Gewicht	kg	0,95	0,95	1,25	1,25	1,55
Material Nr.1)	IP 54	932 6320 550	932 6320 552	932 6340 550	932 6340 552	932 6360 55

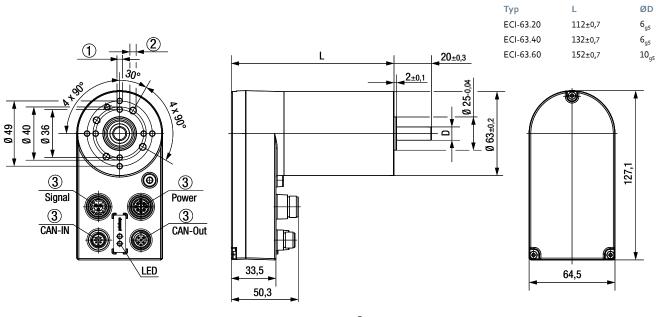

¹⁾ Schutzartangabe bezieht sich auf den eingebauten Zustand mit Abdichtung an der Flanschseite Die Wellengeometrie bei der IP54 Ausführung ist abweichend zu der dargestellten Zeichnung ²⁾ Bei T_U max. 40 °C

Kennlinie 48 V auf Anfrage

Kennlinie 48 V auf Anfrage

Modularer Baukasten Grundmotor Bremsensystem Planetengetriebe Federkraftbremse Integriert NoiselessPlus 63 Seite 54 Bremsmodul ECI 63 Seite 76 Performax®Plus 63 Seite 58 Optimax 63 Seite 62 Inbetriebnahmetool Winkelgetriebe "EP-Tools" EtaCrown® 75 Seite 66 Seite 75 EtaCrown®Plus 63 Seite 70

Bei Motor-Getriebe-Kombinationen kann, abhängig von der Auswahl der Einzelkomponenten, das zulässige Drehmoment (Getriebe) überschritten bzw. nicht erreicht werden.


Seite 33

Anschlusskabel sind separat zu bestellen

Kabel

Technische Zeichnung Maßangaben in mm

- ① $8 \times \text{für}$ gewindefurchende Schrauben M4 nach DIN7500, Einschraubtiefe max. 10,5 mm
- 2 4x für gewindefurchende Schrauben M5 nach DIN7500, Einschraubtiefe max. 10,5 mm
- 3 Stecker

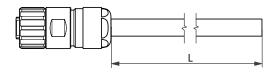
Zulässige Wellenbelastung

 F_{axial} : 150 N F_{radial} : 150 N L_1 : 20 mm

Zul. gleichzeitige Wellenbelastungen bei Nenndrehzahl und einer Lebensdauererwartung L_{10} (im Nennbetrieb) von 20 000 h (bei $T_{\rm U}$ max. 40 °C)

Elektrischer Anschluss

		Pin	Litzenfarbe	Anschluss	Funktion	empfohlene AWC
		1	weiß	D-IN-1	Digitaler Eingang 1	'
12 1		2	braun	D-IN-2	Digitaler Eingang 2	
11 2		3	grün	D-IN-3	Digitaler Eingang 3	
10 \ 3		4	gelb	D-IN-4	Digitaler Eingang 4	
		5	grau	D-IN-5	Digitaler Eingang 5	
A R		6	rosa	D-IN-6	Digitaler Eingang 6	
A B	_ e_	7	blau	D-IN-7	Digitaler Eingang 7	24
	Stecker Signal	8	rot	D-OUT-1	Digitaler Ausgang 1	
9 4	20, 20,	9	schwarz	D-OUT-2	Digitaler Ausgang 2	
8 5		10	violett	Enable	Freigabeeingang	
<u> </u>		11	grau/rosa	A-IN-1+	Analoger Eingang 1	
7 6		12	rot/blau	A-IN-2	Analoger Eingang 2	
3		Α	grau	A-IN-1-	Analoger Eingang 1 GND	18
В С		В	braun	U_{Logik}	Logikversorgung	
		С	schwarz	GND	Masse und Referenz für A-IN-2	
4 2		Α	braun	$U_{z\kappa}$	Leistungsversorgung (Ballast)	
		В	grau	Ballast	Ballastwiderstand	16
A PE		С	schwarz	GND-Power	Leistungsversorgung	
A PE	Stecker Leistung	FE	blau	FE	Funktionserde	
1	Stec	1	weiß	CAN H	CAN-Bus High Signal	
	٠, ٦	2	braun	CAN L	CAN-Bus Low Signal	2/
3 4		3	grün	Enable	Freigabeeingang	24
		4	gelb	U_{Logik}	Logikversorgung	
3\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Stecker CAN-Out	4		CAN H	CAN-Bus High Signal	24
2 1	Stec	5		CAN L	CAN-Bus Low Signal	24
4 3	Stecker CAN-IN	4		CAN H	CAN-Bus High Signal	24
4 3	Ster	5		CAN L	CAN-Bus Low Signal	24
5 P P P P P P P P P P P P P P P P P P P		Änderungen	vorbehalten			



Elektrischer Anschluss Kabel

Maßangaben in mm

L	Material-Nr.
1 000 ± 30	992 0160 059
3 000 ± 30	992 0160 060
1 000 ± 30	992 0160 055
3 000 ± 30	992 0160 056
	3 000 ± 30 1 000 ± 30

* Litzen Pin 1	Pin 2 (CAN	H CAN I	.) nicht ausgeführt
" LILZEIT FIII 1.	FIIIZICAN	T, CAN L	.) HICHE AUSGEFUHLE

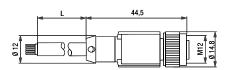
Bei Eigenkonfektion Bezug Einzelteile Stecker Fa. Hummel:

 $1x\,\mathsf{Kabelsteckverbinder}\,\mathsf{M16}\,\mathsf{f\"{u}r}\,\mathsf{Kabel}\,\mathcal{O}\,\mathsf{8-11}\,\mathsf{mm,Mat.-Nr.}\,\mathsf{7.810.500.000}$

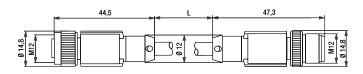
 $1x\,Crimpeins atz\,Serie\,M16,\,Buchse\,12+3\,mit\,Sondercodierung,\,Mat.-Nr.\,7K\,118\,86\,034$

 $3x\,Crimp contakt\,Buchse\,PowerCrimpbereich\,0,5-1,5mm^2,Mat.-Nr.\,7.010.981.202$

12x Crimpcontakt Buchse Signal Crimpbereich 0,08-0,34mm², Mat.-Nr. 7.010.980.802

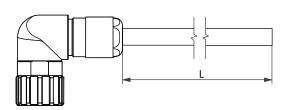

1x Crimpeinsatz Serie M16, Buchse 4+3+PE, Mat.-Nr. 7.810.500.000

1x Crimpeinsatz Serie M16, Buchse 4+3+PE, Mat.-Nr. 7.003.943.102


4x Crimpcontakt 1,6 mm²/Crimpbereich 0,34-1,5mm², Mat.-Nr. 7.010.981.602

2x Crimpcontakt 0,8 mm²/Crimpbereich 0,08-0,34mm², Mat.-Nr. 7.010.980.802

Тур	L	Material-Nr.
Buchse CANopen	5 000 ± 30	992 0160 017



Тур	L	Material-Nr.
Verbindungsleitung CANopen	2 000 ± 30	992 0160 019

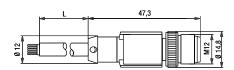
L	Material-Nr.
1 000 ± 30	992 0160 061
3 000 ± 30	992 0160 062
1 000 ± 30	992 0160 057
3 000 ± 30	992 0160 058
	3 000 ± 30 1 000 ± 30

* Litzen Pin 1, Pin 2 (CAN_H, CAN_L) nicht ausgeführt

kelt	1x Kabelsteckverbinder M16 für Kabel Ø 8-11 mm, MatNr. 7.831.500.000
ž.	1x Crimpeinsatz Serie M16. Buchse 12+3 mit Sondercodierung. Mat -Nr. 7K118

3x Crimpcontakt Buchse Power Crimpbereich 0,5-1,5mm², Mat.-Nr. 7.010.981.202

12x Crimpcontakt Buchse Signal Crimpbereich 0,08-0,34mm², Mat.-Nr. 7.010.980.802


1x Kabelsteckverbinder M16 für Kabel Ø 8-11 mm, Mat.-Nr. 7.831.500.000

1x Crimpeinsatz Serie M16, Buchse 4+3+PE, Mat.-Nr. 7.003.943.102

4x Crimpcontakt 1,6 mm² / Crimpbereich 0,34-1,5 mm², Mat.-Nr. 7.010.981.602

2x Crimpcontakt 0,8 mm²/Crimpbereich 0,08-0,34mm², Mat.-Nr. 7.010.980.802

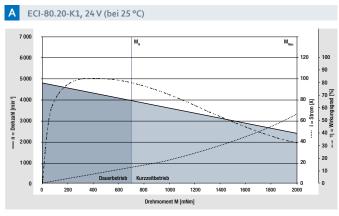
Тур	L	Material-Nr.
Stecker CANopen	5 000 ± 30	992 0160 018

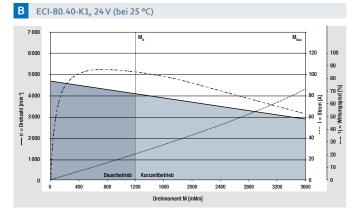
Servomotor ECI-80.XX-K1

www.ebmpapst.com/eci-motoren

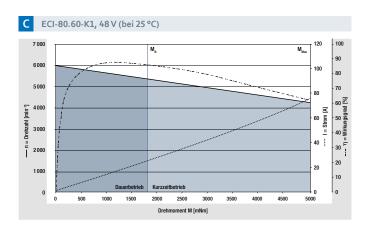
Beschreibung

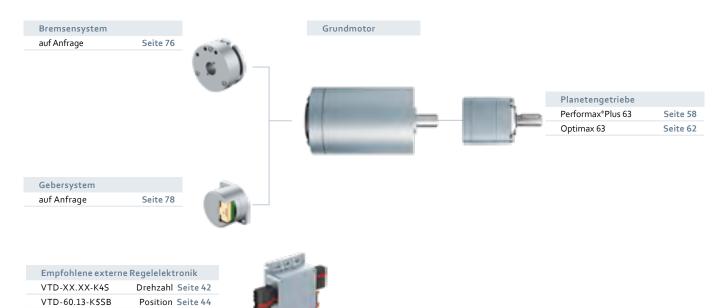
- Hochdynamischer 3-phasiger Innenläufermotor in EC-Technologie
- Geringes Rastmoment
- Robustes und geräuschoptimiertes Kugellagersystem für hohe Lebensdauer
- Hoher Wirkungsgrad sowie hohe Leistungsdichte bei kompakter Bauform
- Grundmotor mit Elektronikmodul K1 für Betrieb mit externer Regelelektronik
- Mechanischer Aufbau und Schnittstellen, ausgelegt für modularen Systembaukasten


Тур		ECI-80.20-K1 -B00	ECI-80.20-K1 -D00	ECI-80.40-K1 -B00	ECI-80.40-K1 -D00	ECI-80.60-K1 -D00
Kennlinie		Α		В		C
Nennspannung (U _N)	V DC	24	48	24	48	48
Nenndrehzahl (n _N) ²⁾	min ⁻¹			4 000		
Nenndrehmoment (M _N) ²⁾	mNm	700	700	1 200	1 200	1 800
Nennstrom (I _N) ²⁾	Α	13,5	7,50	25,0	12,0	18,0
Nennabgabeleistung (P _N) ²⁾	W	293	293	503	503	754
Anlaufmoment (M _A)	mNm	2 400	2 500	3 900	5 000	5 600
Zul. Spitzenstrom (I _{max}) ³⁾	Α	100	60	100	100	100
Dauerblockiermoment (M _{NO})	mNm	700	700	1 200	1 200	1 800
Leerlaufdrehzahl (n _L)	min ⁻¹	4 800	4 800	4 700	4 850	6 100
Leerlaufstrom (I _L)	Α	1,00	0,70	1,50	0,90	1,00
Empf. Drehzahlregelbereich	min ⁻¹			0 4 000		
Rotorträgheitsmoment (J _R)	kgm² x10−6	54	54	104	104	155
Motorkonstante (K _E)	mVs/rad	47,2	94,1	48,2	96,0	72,2
Anschlusswiderstand (R _v)	Ω	0,07	0,30	0,03	0,10	0,04
Anschlussinduktivität (L _v)	mH	300	1300	200	600	200
Schutz bei Überlast				integriert		
Zul. Umgebungstemperaturbereich (T _u)	°C			-30 +40		
Gewicht	kg	1,40	1,40	2,10	2,10	2,70
Material Nr. (Litzenausführung) ¹⁾	IP 40	932 8020 103	932 8020 105	932 8040 103	932 8040 105	932 8060 10
Material Nr. (Kabelausführung) ¹⁾	IP 54			auf Anfrage		


²⁾ Schutzartangabe bezieht sich auf den eingebauten Zustand mit Abdichtung an der Flanschseite Die Wellengeometrie bei der IP54 Ausführung ist abweichend zu der dargestellten Zeichnung
² Bei T_U max. 40 °C

Vorzugstyp in 48 Stunden versandfertig.


³⁾ Zulässige Spitzenstromdauer: max. 5 Sek. – kann erst nach vollständiger Abkühlung wiederholt werden



Kennlinie 48 V auf Anfrage

Kennlinie 48 V auf Anfrage

Modularer Baukasten

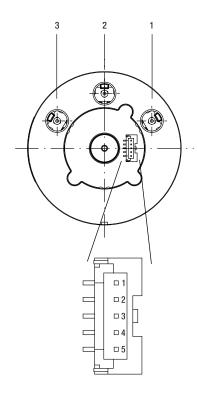
Bei Motor-Getriebe-Kombinationen kann, abhängig von der Auswahl der Einzelkomponenten, das zulässige Drehmoment (Getriebe) überschritten bzw. nicht erreicht werden.


Position Seite 46

VTD-60.35-K5SB

Technische Zeichnung Maßangaben in mm

Тур	L1	L2
ECI-80.20	89±0,3	69±0,3
ECI-80.40	109±0,3	116±0,3
ECI-80.60	129±0,3	136±0,3

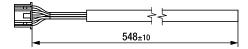

- ① $8 \times \text{für}$ gewindefurchende Schrauben M6 nach DIN7500, Einschraubtiefe max. 13 mm
- 2 4 x für gewindefurchende Schrauben M5 nach DIN7500, Einschraubtiefe max. 13 mm

Zulässige Wellenbelastung

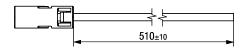
F_{axial}: 70 N Zul. gleichzeitige Wellenbelastungen bei Nenndrehzahl und einer Lebensdauererwartung L₁₀ (im Nennbetrieb) von 20 000 h (bei T_U max. 40 °C)

Elektrischer Anschluss Litze

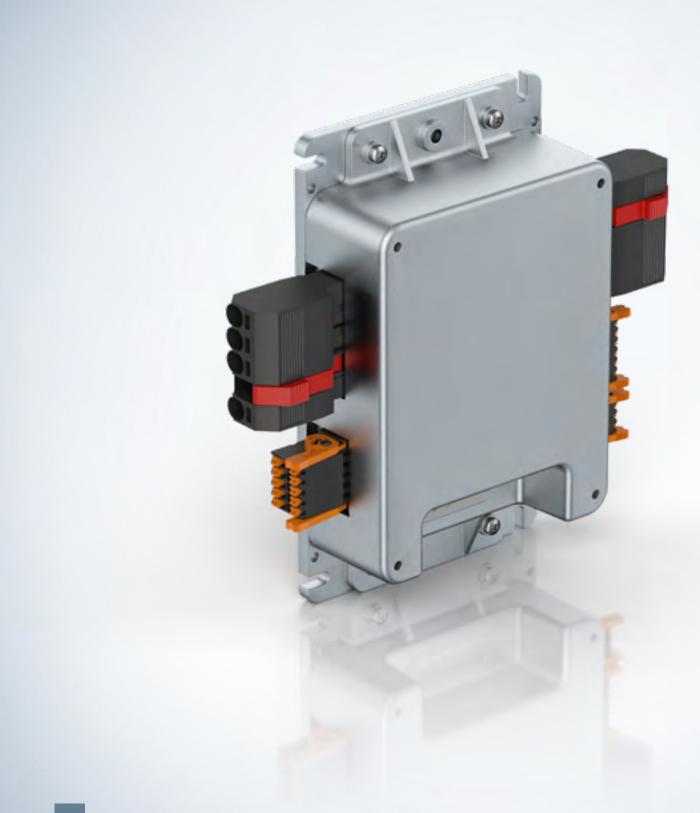
	Pin	Litzenfarbe	Anschluss	Funktion	empfohlene AWG
ng	1	braun	Phase U	Wicklungsanschluss U	
istun	2	violett	Phase V	Wicklungsanschluss V	12
Le	3	gelb	Phase W	Wicklungsanschluss W	


	Pin	Litzenfarbe	Anschluss	Funktion	empfohlene AWG
leubis 2 3 4 5	1	rot	U _B	Betriebsspannung	
	2	schwarz	GND	Ground Hall	
	3	grün	Hall A	Hall Signal A	24
	4	weiß	Hall B	Hall Signal B	
	5	grau	Hall C	Hall Signal C	

Elektrischer Anschluss Kabel


Maßangaben in mm

Motorseitig



Тур	Material-Nr.	AWG
Sensorleitung mit Gegenstecker	992 0800 001	24

Motorseitig

Тур	Farbe	Material-Nr.	AWG
Wicklungszuleitung U	braun	992 0800 012	
Wicklungszuleitung V	violett	992 0800 011	12
Wicklungszuleitung W	gelb	992 0800 010	

Kegelelektroniken

Regelelektroniken

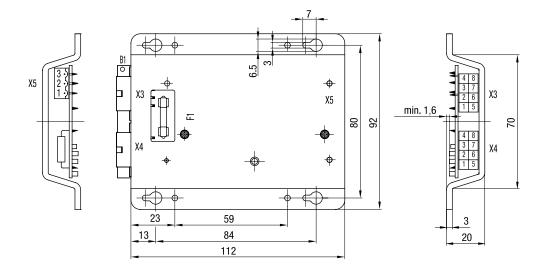
ebmpapst

the engineer's choice

	Seite
VTD-XX.XX-K3 (Drehzahl)	40
VTD-XX.XX-K4S (Position)	42
VTD-60.13-K5SB (CANopen)	44
VTD-60.35-K5SB (CANopen)	46

Regelelektronik VTD-XX.XX-K3

www.ebmpapst.com/eci-motoren


Beschreibung

- Motorkommutierung und Drehzahlregelung über Mikrocontroller
- Regelparameter, jeweils spezifisch für einen Motor ausgelegt
- 4-Quadranten-Regler
- Drehzahlvorgabe über analogen Sollwert $0 \dots 10 \, V \, DC$
- Drehzahl Istwertaufbereitung und Ausgabe
- Einstellung der Betriebsart über 2 Steuereingänge
- Überwachungsfunktionen für Ausgangsstrom und Spannung

Туре		VTD-24.XX-K3	VTD-48.XX-K3
Nennspannung (Leistungsversorgung U _N)	V DC	24	48
Zul. Versorgungsspannungsbereich (U)	V DC	1830	30 52
Zulässiger Dauerausgangsstrom ¹⁾	Α	3 - 12 variantenabhängig	3 - 6 variantenabhängig
Maximale Kommutierungsfrequenz	kHz	2	2
Schaltfrequenz	kHz	20	20
Minimale Anschlussinduktivität	mH	0,1	0,1
Digitale Eingänge	Anzahl	2	2
Digitale Ausgänge	Anzahl	1	1
Analoge Eingänge	Anzahl	1	1
Effizienz (im optimalen Arbeitsbereich)	%	95	95
Zulässiger Umgebungstemperaturbereich (T _u)	°C	0 +40	0 +40
Zulässige Umgebungsfeuchte ²⁾	%	5 93	5 93
Schutzart		IP 00	IP 00
Gewicht	kg	0,2	0,2
Material Nr. (IP 20)		auf Anfrage	auf Anfrage

¹⁾ Gilt bei Bemessungstemperatur T_U = 40 °C ²⁾ Betauung nicht zulässig

Technische Zeichnung Maßangaben in mm

Elektrischer Anschluss

	Steuerungs	stecker X3	Motorsteck	cer X4	Kondensato	Kondensatorstecker X5		
Pin	Anschluss	Funktion	Anschluss	Funktion	Anschluss	Funktion		
1	Α	Digitaleingang A	L3	Motorphase 3	U+	Kondensatoranschluss		
2	+U _B	Versorgungsspannung	+U-Hall	Versorgung Hall-Sensorik	U-	Kondensatoranschluss		
3	n.c.	Nicht belegt	RLG2	Hall-Signal 2	BR	Ballast-Widerstand		
4	S+	Sollwerteingang	RLG1	Hall-Signal 1				
5	В	Digitaleingang B	L2	Motorphase 2				
6	Ist	Drehzahl Istwert	L1	Motorphase 1				
7	GND	Ground Versorgungsspannung	GND-Hall	Ground Hall-Sensorik				
8	S-	Ground Sollwerteingang	RLG3	Hall-Signal 3				

Änderungen vorbehalten

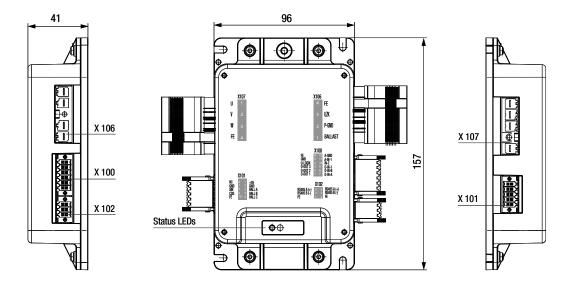
Zubehör

Тур	Material-Nr.
Steuerungsstecker X3	
Motorstecker X4	Auf Anfrage
Kondensatorstecker X5	

Regelelektronik VTD-XX.XX-K4S mit Drehzahl-, Drehmoment- und Postioniermodus

www.ebmpapst.com/eci-motoren

Beschreibung


- Betriebselektronik zur Ansteuerung von 3-phasigen BLDC Motoren bis 1 000 Watt Abgabeleistung
- 4-Quadranten-Regler
- Drehzahl-, Drehmoment- und Postioniermodus
- Auswahl Betriebsmodi und Parametrierung über RS485
- Anwenderfreundliche Parametrierung über PC-Software "driveSTUDIO"
- Integrierte Ballast-Ansteuerung
- Gerätestatus mit Hilfe von 2 LEDs
- Gegenstecker sind im Lieferumfang enthal-

Тур		VTD-24.40-K4S	VTD-48.20-K4S	
Nennspannung (Leistungsversorgung U_N)	V DC	24	48	
Zul. Versorgungsspannungsbereich (U)	V DC	18 30	18 53	
Maximaler Ausgangsstrom (max. 5 Sek.) ¹⁾	Α	100	100	
Zulässiger Dauerausgangsstrom ¹⁾	Α	40	20	
Nennspannung (Logikversorgung U _L)	V DC	24	24	
Stromaufnahme Logik (bei 24 V DC) ²⁾	mA	< 100	< 100	
Maximale Kommutierungsfrequenz	kHz	2	2	
Schaltfrequenz	kHz	20	20	
Minimale Anschlussinduktivität	mH	0,10	0,10	
Digitale Eingänge	Anzahl	4	4	
Digitale Ausgänge	Anzahl	3	3	
Analoge Eingänge	Anzahl	1	1	
Parametrierschnittstelle		RS485	RS485	
Effizienz (im optimalen Arbeitsbereich)	%	> 95	> 95	
Zulässiger Umgebungstemperaturbereich ($T_{\rm U}$)	°C	-30 +40	-30 +40	
Zulässige Umgebungsfeuchte ³⁾	%	5 85	5 85	
Schutzart		IP 20	IP 20	
Gewicht	kg	ca. 0,50	ca. 0,50	
Material-Nr.		994 2440 000	994 4820 000	

Gilt bei Bemessungstemperatur TU = 25 °C, Derating bei abweichenden (höheren) Temperaturen
 Stromaufnahme ohne Strombedarf digitale Ausgänge

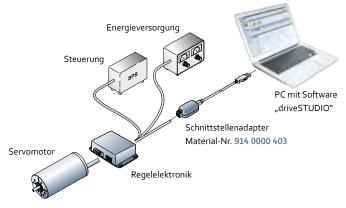
³⁾ Betauung nicht zulässig

Technische Zeichnung Maßangaben in mm

Gegenstecker sind im Lieferumfang enthalten

Elektrischer Anschluss

	X100 Signale Logik- versorgung		X101 Hall-Sensorer	1	X102 Parametrier- Schnittstelle		X106 Leistungs- versorgung Regler		X107 Leistungs- versorgung Motor	
Pin	Anschluss	Funktion	Anschluss	Funktion	Anschluss	Funktion	Anschluss	Funktion	Anschluss	Funktion
1	D-OUT-1	Digitaler Ausgang 1	+U Hall (5V)	Versorgung Hall-Sensorik	FE	Funktionserde	Ballast	Ballastwider- stand	U	Wicklungs- anschluss U
2	D-OUT-2	Digitaler Ausgang 2	GND	Ground Hall-Sensorik	RS485 B (-)	Parametrier- schnitstelle	P-GND	Ground Leistungsver- sorgung	V	Wicklungs- anschluss V
3	D-OUT-3	Digitaler Ausgang 3	Hall A	Hall Signal A	RS485 A (+)	Parametrier- schnitstelle	U _{zK}	Leistungs- versorgung	W	Wicklungs- anschluss W
4	U _{Logik}	Logikversorgung	Hall B	Hall Signal B	FE	Funktionserde	FE	Funktionserde	FE	Funktionserde
5	GND	Ground Logikversorgung	Hall C	Hall Signal C	RS485 B (-)	Parametrier- schnitstelle				
6	FE	Funktionserde	+U _{sin/cos} (5V)	Versorgung Geber	RS485 A (+)	Parametrier- schnitstelle				
7	D-IN-A	Digitaler Eingang A	GND	Masse Geber						
8	D-IN-B	Digitaler Eingang B	SIN	SIN Signal Geber						
9	D-IN-1	Digitaler Eingang 1	cos	COS Signal Geber						
10	D-IN-2	Digitaler Eingang 2	FE	Funktionserde						
11	A-IN-1	Analoger Eingang 1								
12	A-IN-GND	Analoger Eingang 1 Ground								
AWG	22	2 (0,34 mm²)	22 (0,	34 mm²)	22 (0	,34 mm²)	8 (10 r	nm² bei 40A)	8 (10 m	m² bei 40A)


Änderungen vorbehalten

Inbetriebnahmetool

Zubehör

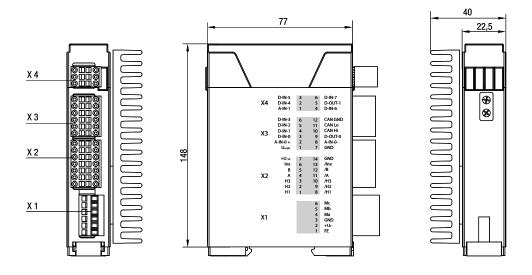
Abbildung PC-Software "driveSTUDIO"

Anordnung Inbetriebnahme

Regelelektronik VTD-60.13-K5SB mit Drehzahl-, Drehmoment- und Positioniermodus

www.ebmpapst.com/eci-motoren

Beschreibung


- Kompakter 4-Quadranten-Regler f
 ür BLDC Motoren
- CANopen Schnittstelle (Protokoll DS301, Geräteprofil DS402)
- Integrierte digitale Eingänge
- Integrierte digitale Ausgänge
- Integrierte analoge Eingänge
- Überspannungs-, Unterspannungs- und Übertemperaturüberwachung
- Gerätestatusanzeige mit Hilfe von 3 LEDs (Power, Status, Error)
- Hex-Schalter zum Einstellen der Geräte-Node ID
- Frei programmierbar, dank integrierter MPU (Motion Process Unit)

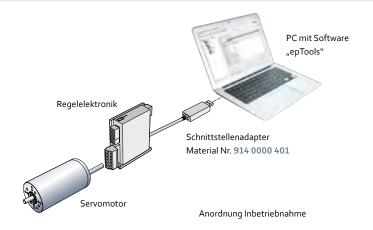
Тур		VTD-60.	13-K5SB	
Nennspannung (Leistungsversorgung U _N)	V DC	24	48	
Zul. Versorgungsspannungsbereich (U)	V DC	9 60	9 60	
Maximaler Ausgangsstrom ¹⁾	Α	50	50	
Zulässiger Dauerausgangsstrom ¹⁾	Α	12,5 (bei 24V)	12,5 (bei 24V)	
Nennspannung (Logikversorgung U _L)	V DC	9 30	9 30	
Stromaufnahme Logik (bei 24 V DC) ²⁾	mA	60	60	
Maximale Kommutierungsfrequenz	kHz	2	2	
Schaltfrequenz	kHz	32	32	
Minimale Anschlussinduktivität	mH	0,20	0,20	
Digitale Eingänge	Anzahl	8	8	
Digitale Ausgänge	Anzahl	2	2	
Analoge Eingänge	Anzahl	2	2	
Parametrierschnittstelle		CANopen	CANopen	
Effizienz (im optimalen Arbeitsbereich)	%	95	95	
Zulässiger Umgebungstemperaturbereich (T _u)	°C	0 +70	0 +70	
Zulässige Umgebungsfeuchte³)	%	5 85	5 85	
Schutzart		IP 20	IP 20	
Gewicht	kg	ca. 0,31	ca. 0,31	
Material-Nr.		994 6013 000	994 6013 000	

Gilt bei Bemessungstemperatur TU = 25 °C, Derating bei abweichenden (höheren) Temperaturen
 Stromaufnahme ohne Strombedarf digitale Ausgänge

³⁾ Betauung nicht zulässig

Technische Zeichnung Maßangaben in mm

Gegenstecker sind im Lieferumfang enthalten


Elektrischer Anschluss

	Motor X1		Hall-Senso	ren und Drehgeber X2	I/O's und C	AN X3	I/O's X4	
Pin	Anschluss	Funktion	Anschluss	Funktion	Anschluss	Funktion	Anschluss	Funktion
1	FE	Funktionserde	Hall 1	Hall Sensorsignal 1	U _{Logik}	Logikversorgung	A-IN-1	Analoger Eingang 1
2	+Up	Versorgungs- spannung	Hall 2	Hall Sensorsignal 2	A-IN-0+	Analoger Eingang 0, Plus	D-IN-4	Digitaler Eingang 4
3	GND	Ground	Hall 3	Hall Sensorsignal 3	D-IN-0	Digitaler Eingang 0	D-IN-5	Digitaler Eingang 5
4	Ma	Phase A	Α	Inkrementalgeber - Spur A	D-IN-1	Digitaler Eingang 1	D-IN-6	Digitaler Eingang 6
5	Mb	Phase B	В	Inkrementalgeber - Spur B	D-IN-2	Digitaler Eingang 2	D-OUT-1	Digitaler Ausgang 1
6	Mc	Phase C	Inx	Inkrementalgeber - Index	D-IN-3	Digitaler Eingang 3	D-IN-7	Digitaler Eingang 7
7			+U _{5V}	5V Geberversorgung (Hall- und Drehgeber)	GND	Ground Elektronik		
8			/H1	Hall Sensorsignal 1 negiert	A-IN-0 -	Analoger Eingang 0, Minus		
9			/H2	Hall Sensorsignal 2 negiert	D-OUT-0	Digitaler Ausgang 0		
10			/H3	Hall Sensorsignal 3 negiert	CAN Hi	CAN Bus High Signal		
11			/A	Inkrementalgeber - Spur A negiert	CAN Lo	CAN Bus Low Signal		
12			/B	Inkrementalgeber - Spur B negiert	CAN GND	CAN Ground		
13			/Inx	Inkrementalgeber - Index negiert				
14			GND	Geber Ground				

Änderungen vorbehalten

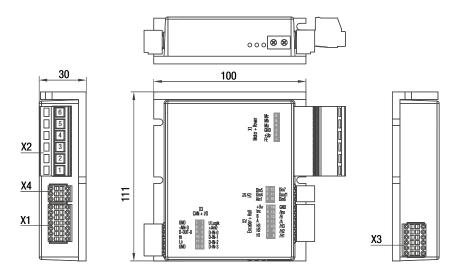
Zubehör

Inbetriebnahmetool
"epTools" (Seite 70)

Regelelektronik VTD-60.35-K5SB mit Drehzahl-, Drehmoment- und Postioniermodus

www.ebmpapst.com/eci-motoren

Beschreibung


- Kompakter 4-Quadranten-Regler f
 ür BLDC Motoren
- CANopen Schnittstelle (Protokoll DS301, Geräteprofil DS402)
- Integrierte digitale Eingänge
- Integrierte digitale Ausgänge
- Integrierte analoge Eingänge
- Überspannungs-, Unterspannungs- und Übertemperaturüberwachung
- Gerätestatusanzeige mit Hilfe von 3 LEDs (Power, Status, Error)
- Hex-Schalter zum Einstellen der Geräte-Node ID
- Frei programmierbar, dank integrierter MPU (Motion Process Unit)

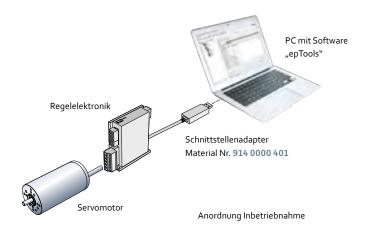
Тур		VTD-60.	35-K5SB	
Nennspannung (Leistungsversorgung U _N)	V DC	24	48	
Zul. Versorgungsspannungsbereich (U)	V DC	9 60	9 60	
Maximaler Ausgangsstrom ¹⁾	Α	100	100	
Zulässiger Dauerausgangsstrom ¹⁾	Α	35 (bei 24V)	35 (bei 24V)	
Nennspannung (Logikversorgung U _L)	V DC	9 30	9 30	
Stromaufnahme Logik (bei 24 V DC) ²⁾	mA	70	70	
Maximale Kommutierungsfrequenz	kHz	2	2	
Schaltfrequenz	kHz	32	32	
Minimale Anschlussinduktivität	mH	0,20	0,20	
Digitale Eingänge	Anzahl	8	8	
Digitale Ausgänge	Anzahl	2	2	
Analoge Eingänge	Anzahl	2	2	
Parametrierschnittstelle		CANopen	CANopen	
Effizienz (im optimalen Arbeitsbereich)	%	95	95	
Zulässiger Umgebungstemperaturbereich (T_{U})	°C	0 +70	0 +70	
Zulässige Umgebungsfeuchte ³⁾	%	5 85	5 85	
Schutzart		IP 20	IP 20	
Gewicht	kg	ca. 0 , 38	ca. 0,38	
Material-Nr.		994 6035 000	994 6035 000	

Gilt bei Bemessungstemperatur TU = 25 °C, Derating bei abweichenden (höheren) Temperaturen
 Stromaufnahme ohne Strombedarf digitale Ausgänge

³⁾ Betauung nicht zulässig

Technische Zeichnung Maßangaben in mm

Gegenstecker sind im Lieferumfang enthalten


Elektrischer Anschluss

	X1	Motor	X2	Hall-Sensoren und Drehgeber	Х3	I/O's und CAN	X4	I/O's
Pin	Anschluss	Funktion	Anschluss	Funktion	Anschluss	Funktion	Anschluss	Funktion
1	FE	Funktionserde	H1	Hall Sensorsignal 1	U _{Logik}	Logikversorgung	A-IN-1	Analoger Eingang 1
2	+Up	Versorgungsspannung Leistung	H2	Hall Sensorsignal 2	A-IN-0+	Analoger Eingang 0, Plus	D-IN-4	Digitaler Eingang 4
3	GND	Ground	H3	Hall Sensorsignal 3	D-IN-0	Digitaler Eingang 0	D-IN-5	Digitaler Eingang 5
4	Ma	Phase A	Α	Inkrementalgeber - Spur A	D-IN-1	Digitaler Eingang 1	D-IN-6	Digitaler Eingang 6
5	Mb	Phase B	В	Inkrementalgeber - Spur B	D-IN-2	Digitaler Eingang 2	D-OUT-1	Digitaler Ausgang 1
6	Mc	Phase C	Inx	Inkrementalgeber - Index	D-IN-3	Digitaler Eingang 3	D-IN-7	Digitaler Eingang 7
7			+U _{5V}	5 V Geberversorgung (Hall- und Drehgeber)	GND	Ground Elektronik		
8			/H1	Hall Sensorsignal 1 negiert	A-IN-0 -	Analoger Eingang 0, Minus		
9			/H2	Hall Sensorsignal 2 negiert	D-OUT-0	Digitaler Ausgang 0		
10			/H3	Hall Sensorsignal 3 negiert	CAN Hi	CAN Bus High Signal		
11			/A	Inkrementalgeber - Spur A negiert	CAN Lo	CAN Bus Low Signal		
12			/B	Inkrementalgeber - Spur B negiert	CANGND	Ground CAN		
13			/lnx	Inkrementalgeber - Index negiert				
14			GND	Masse Geberversorgung				

Änderungen vorbehalten

Zubehör

Inbetriebnahmetool "epTools" (Seite 70)

Getriebe

Getriebe

ebmpapst

the engineer's choice

	Seite
NoiselessPlus 42 (Planetengetriebe)	52
NoiselessPlus 63 (Planetengetriebe)	54
Performax®Plus 42 (Planetengetriebe)	56
Performax®Plus 63 (Planetengetriebe)	58
Optimax 42 (Planetengetriebe)	60
Optimax 63 (Planetengetriebe)	62
EtaCrown°52 (Kronenradgetriebe)	64
EtaCrown°75 (Kronenradgetriebe)	66
EtaCrown®Plus 42 (Kronenradgetriebe)	68
EtaCrown®Plus 63 (Kronenradgetriebe)	70

Informationen über Getriebe

Im Produktbereich der Getriebe bieten wir zwei unterschiedliche Getriebetechnologien.

Diese umfassen Planeten- und Kronenradgetriebe, die nach dem Baukastenprinzip individuell an die Anforderung des Kunden angepasst werden. Welche der angebotenen Technologien für die jeweilige Anwendung die besten Ergebnisse liefert, entscheidet letztlich die Applikation selbst.

Planetengetriebe

- Höhere Untersetzungen in erster und zweiter Stufe
- Exzellente Laufruhe
- Extrem leistungsstark
- Kompakte Bauform
- Kein Achsversatz
- Umfassende Produktpalette mit drei Baureihen
 - Noiseless Plus einzigartige Laufruhe
 - Performax®Plus extreme Leistungsfähigkeit
 - Optimax Robust und langlebig

Winkelgetriebe

- Herausragender Wirkungsgrad
- Großes Untersetzungsspektrum
- Keine Selbsthemmung
- Höchste Leistungsdichte
- Kein Achsversatz
- Zwei verschiedene Baureihen
 - EtaCrown®
 - EtaCrown® Plus

Das umfassende Produktangebot an **Planetengetrieben** findet Anwendung wenn hohe Leistungsdichten gefordert sind

Wenn es gilt, einen hohen Wirkungsgrad unter minimaler Geräuschentwicklung zu erzielen, zeigt das **NoiselessPlus** was in ihm steckt. Die beispielhafte *Laufruhe* wird durch äußerst *robuste*, schrägverzahnte Planetenräder aus hochfestem Kunststoff erreicht.

Laufruhe und hohe Leistungsstärke bringt das **Performax®Plus**. Schrägverzahnte Planetenräder aus hochfestem Kunststoff sorgen in der ersten Stufe für exzellente Laufruhe. Kombiniert mit einem gehärteten Hohlrad in der Abtriebsstufe können hohe Leistungen realisiert werden.

Maximale Robustheit bei größter Leistungsdichte bietet das **Optimax**. Geradverzahnte Planetenräder aus hochfestem Stahl in erster und zweiter Getriebestufe erlauben hohe Spitzenlasten und sichern zudem eine lange Getriebelebensdauer. Bei erhöhten Geräuschanforderungen können optional in der Eingangsstufe hochfeste Kunststoffplanetenräder eingesetzt werden.

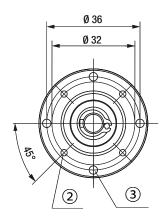
In der Familie der **Winkelgetriebe** überzeugt ebm-papst mit der innovativen Kronenradtechnologie.

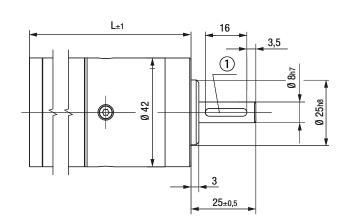
Das **EtaCrown**® überzeugt durch ein breites Untersetzungsspektrum bei einer kompakten Bauweise. Dank des Null-Achsversatzes bei symmetrischem Aufbau ist ein platzsparender Einbau jederzeit möglich. Hohe Radiallasten können zudem über eine doppelte Kugellagerung der Abtriebswelle aufgenommen werden.

Minimaler Bauraum bei maximaler Leistung können mit dem **EtaCrown®Plus** realisiert werden. Dank einer nachgeschalteten Planetenstufe können bei gleicher Baugröße verglichen mit dem EtaCrown deutlich höhere Drehmomente erreicht werden.

Die Abtriebswellen der ebm-papst Getriebe sind generell aus gehärtetem und geschliffenen Einsatzstahl gefertigt und damit besonders langlebig. Die Drehmomentübertragung erfolgt standardmäßig über eine Passfederverbindung.

Planetengetriebe NoiselessPlus 42


Mehr unter


www.ebmpapst.com/eci-motoren

Beschreibung

- Exzellente Laufruhe aufgrund schrägverzahnt ausgeführter Getriebestufen
- Verzahnungsteile aus gleitoptimiertem Kunststoff unterstützen Laufruhe
- Hohe Untersetzungen in erster und zweiter Getriebestufe
- Hohe Radiallasten aufgrund doppelter Kugellagerung der Abtriebswelle
- Flexible Anbindung in die Kundenapplikationen (Wellenvarianten, Zentrierbund und Befestigungsteilkreis)

Тур			Noiseles	sPlus 42.1			No	oiselessPlus 4	2.2	
Untersetzung		4,30	6,00	11,0	21,0	26,0	47,6	66,0	121	231
Stufenzahl		1	1	1	1	2	2	2	2	2
Wirkungsgrad		0,90	0,90	0,90	0,90	0,81	0,81	0,81	0,81	0,81
Max. Eingangsdrehzahl (n ₁)	min ⁻¹					6 000				
Nennabtriebsmoment (M _{ab})	Nm	2,52	1,96	1,10	0,38	4,00	4,28	4,94	3,02	3,66
Kurzzeitmoment (M_{max})	Nm	6,30	4,90	2,75	0,95	10,0	10,7	12,4	7,55	9,15
Getriebespiel	0					0,2 0,5				
Zul. Betriebstemperaturbereich	°C					-20 +80				
Betriebsart						S1				
Schutzart						IP 50				
Gewicht	kg	0,22	0,22	0,22	0,22	0,25	0,25	0,25	0,25	0,25
Wellenbelastung radial / axial	N	50 / 350	80 / 350	175 / 350	220 / 350	250 / 350	520 / 350	680 / 350	900 / 350	1 000 / 350
Lebensdauer	h					10 000				
Schmierung					Fettschm	ierung auf Lel	ensdauer			
Einbaulage						beliebig				
Länge	mm	40,1	40,1	40,1	40,1	67,1	67,1	67,1	67,1	67,1

- ① Passfeder DIN 6885 A-3x3x16
- ② 4 x M3, 8 tief
- ③ 4 x M4, 8 tief

350 N F_{radial}: s. Tabelle 12,5 mm

Bei Nenndrehzahl, Betriebsfaktor $C_{\rm B}$ =1 und einer Lebensdauererwartung L_{10} von 10 000 h (bei $T_{\rm U}$ max. 40°C im Nennbetrieb)

Länge Motor-Getriebe-Kombinationen

Maßangaben in mm

		Länge L	:	1-stufige Un	tersetzunger	n	Länge L		2-stufi	ge Untersetz	ungen	
		1-stufig	4,30	6,00	11,0	21,0	2-stufig	26,0	47,6	66,0	121	231
ECI-42.20-NP42	24V	1// 1	•	•	•	X	171 1	•	•	•	Χ	X
ECI-42.20-INP42	48V	144,1	•	•	•	X	171,1	•	•	•	Χ	X
ECI /2 /0 ND/2	24V	167.1	0	•	X	Х	101.1	0	Х	Х	Х	Х
ECI-42.40-NP42	48V	164,1	•	•	Χ	Х	191,1	•	Х	Х	Х	Х

Änderungen vorbehalten

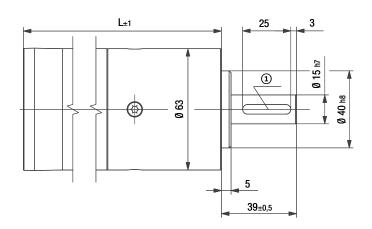
Standard

O Vorzugstyp

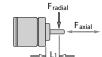
X auf Anfrage

Planetengetriebe NoiselessPlus 63

Mehr unter


www.ebmpapst.com/eci-motoren

Beschreibung


- Exzellente Laufruhe aufgrund schrägverzahnt ausgeführter Getriebestufen
- Verzahnungsteile aus gleitoptimiertem Kunststoff unterstützen Laufruhe
- Hohe Untersetzungen in erster und zweiter Getriebestufe
- Hohe Radiallasten aufgrund doppelter Kugellagerung der Abtriebswelle
- Flexible Anbindung in die Kundenapplikationen (Wellenvarianten, Zentrierbund und Befestigungsteilkreis)

Тур		_	Noiseles	Plus 63.1			Noiseles	sPlus 63.2	
,,		/ 20			21.0	26.0			121
Untersetzung		4,30	6,00	11,0	21,0	26,0	47,6	66,0	121
Stufenzahl		1	1	1	1	2	2	2	2
Wirkungsgrad		0,90	0,90	0,90	0,90	0,81	0,81	0,81	0,81
Max. Eingangsdrehzahl (n ₁)	min ⁻¹				6 (000			
Nennabtriebsmoment (M _{ab})	Nm	8,99	7,13	3,98	1,32	12,6	14,7	17,5	10,6
Kurzzeitmoment (M_{max})	Nm	22,5	17,8	9,95	3,30	31,5	36,8	43,8	26,5
Getriebespiel	0				0,2 .	0,5			
Zul. Betriebstemperaturbereich	°C				-20	+80			
Betriebsart					S	51			
Schutzart					IP	50			
Gewicht	kg	0,56	0,56	0,56	0,56	0,80	0,80	0,80	0,80
Wellenbelastung radial / axial	N	50 / 1 000	50/1000	50/1000	100/1000	780 / 1 000	1000/1000	1000/1000	1550/1000
Lebensdauer	h				10	000			
Schmierung				ı	Fettschmierung	auf Lebensdaue	er		
Einbaulage					beli	ebig			
Länge	mm	59	59	59	59	91,4	91,4	91,4	91,4

- 1 Passfeder DIN 6885 A-5x5x25
- 2 4 x M5, 10 tief

1000 N s. Tabelle 19 mm

Bei Nenndrehzahl, Betriebsfaktor $C_{\rm B}$ =1 und einer Lebensdauererwartung L_{10} von 10 000 h (bei $T_{\rm U}$ max. 40°C im Nennbetrieb)

Länge Motor-Getriebe-Kombinationen

Maßangaben in mm

		Länge L		1-stufige Unt	ersetzungen		Länge L		2-stufige Un	tersetzungen	
		1-stufig	4,30	6,00	11,0	21,0	2-stufig	26,0	47,6	66,0	121
ECI-63.20-K1-NP63	24V	165,1	•	•	•	X	197,5	•	•	•	Χ
ECI-03.20-K1-NP03	48V	105,1	•	•	•	X	197,5	•	•	•	Х
ECI-63.40-K1-NP63	24V	185,1	0	•	Х	X	217,5	0	X	Χ	Х
ECI-03.40-K1-NP03	48V	105,1	•	•	Х	X	217,5	•	X	Χ	Χ
ECI-63.60-K1-NP63	24V	205,1	•	•	Х	X	237,5	•	X	Χ	Χ
ECI-03.00-K1-NP03	48V	205,1	0	•	Х	Χ	237,5	0	X	Χ	Х
551 52 20 1/2 NB52	24V	477.5	•	•	•	Х	200.0	•	•	•	Х
ECI-63.20-K3-NP63	48V	177,5	•	•	•	Х	209,9	•	•	•	Х
ECI-63.40-K3-NP63	24V	197,5	•	•	Х	Х	220.0	•	X	Х	Х
ECI-63.40-K3-NP63	48V	197,5	•	•	Х	X	229,9	•	X	Х	Х
ECI-63.60-K3-NP63	48V	217,5	•	•	Χ	Х	249,9	•	X	Χ	Х
	24V		•	•	•	Х		•	•	•	Х
ECI-63.20-K4-NP63	48V	177,5	•	•	•	Х	209,9	•	•	•	Х
	24V		0	•	Х	Х		0	X	X	Х
ECI-63.40-K4-NP63	48V	197,5	•	•	Х	Х	229,9	•	X	Х	Х
ECI-63.60-K4-NP63	48V	217,5	0	•	Х	Х	249,9	0	Х	Х	Х
ECI (2) 20 I/E NE(2)	24V	171	•	•	•	X	202./	•	•	•	Х
ECI-63.20-K5-NP63	48V	171	•	•	•	Х	203,4	•	•	•	Х
ECL CO / O I/E NIDCO	24V	101	•	•	Х	Х	222 (•	X	Х	Х
ECI-63.40-K5-NP63	48V	191	•	•	Х	Х	223,4	•	X	Х	Х
ECI-63.60-K5-NP63	48V	211	•	•	X	Х	243,4	•	X	X	Х

Änderungen vorbehalten

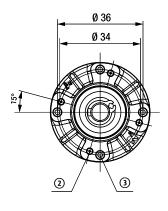
Standard

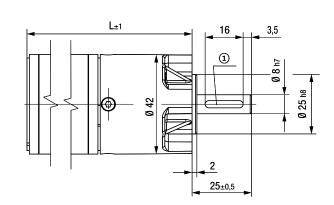
O Vorzugstyp

auf Anfrage

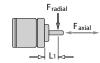
Planetengetriebe Performax®Plus 42

Mehr unter


www.ebmpapst.com/eci-motoren


Beschreibung

- Hohe Drehmomente durch größere Verzahnungsbreiten in der ersten Getriebestufe
- Gute Stoßfestigkeit durch Gehäuse aus gehärtetem Stahl mit Geradverzahnung in der Abtriebsstufe
- Hohe Laufruhe aufgrund schrägverzahnt ausgeführter erster Getriebestufe
- Planetenräder aus gleitoptimiertem Kunststoff in der ersten Getriebestufe unterstützen die Laufruhe
- Großer Wirkdurchmesser durch Radialverschraubung


Тур		Performax	®Plus 42.1	Performax	®Plus 42.2
Untersetzung		5,00	9,00	30,0	54,0
Stufenzahl		1	1	2	2
Wirkungsgrad		0,90	0,90	0,81	0,81
Max. Eingangsdrehzahl (n ₁)	min ⁻¹		6 0	00	
Nennabtriebsmoment (M _{ab})	Nm	2,00	1,12	4,48	6,70
Kurzzeitmoment (M_{max})	Nm	5,00	2,80	11,2	16,8
Getriebespiel	0		0,7	. 1,2	
Zul. Betriebstemperaturbereich	°C		-20	+80	
Betriebsart			S	1	
Schutzart			IP :	50	
Gewicht	kg	0,22	0,22	0,33	0,33
Wellenbelastung radial / axial	N		250 /	150	
Lebensdauer	h		5 0	00	
Schmierung			Fettschmierung a	auf Lebensdauer	
Einbaulage			belie	big	
Länge	mm	39,3	39,3	54,8	54,8

- ① Passfeder DIN 6885 A-3x3x16
- ② 4 x M3, 8 tief
- ③ 4 x M4, 8 tief

Bei Nenndrehzahl, Betriebsfaktor 150 N $C_{\rm B}$ =1 und einer Lebensdauererwartung L_{10} von 5 000 h (bei $T_{\rm U}$ max. 40°C im Nennbetrieb) 250 N

Länge Motor-Getriebe-Kombinationen

Maßangaben in mm

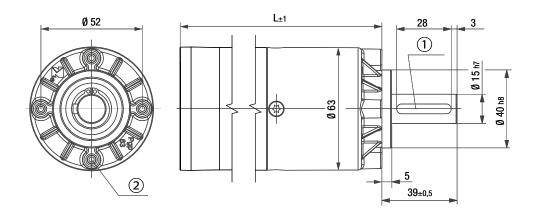
		Länge L	1-stufige Unters	setzungen	Länge L	2-stufige Unters	etzungen
		1-stufig	5,00	9,00	2-stufig	30,0	54,0
ECI /2 20 K1 PD/2	24V	1/22	•	•	150.0	•	•
ECI-42.20-K1-PP42	48V	143,3	•	•	158,8	•	•
ECL / 2 / 0 / 1 DD / 2	24V	162.2	0	Х	170.0	0	X
ECI-42.40-K1-PP42	48V	163,3	•	Х	178,8	•	X

Änderungen vorbehalten

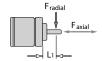
Standard

X auf Anfrage

Planetengetriebe Performax®Plus 63


Mehr unter

www.ebmpapst.com/eci-motoren


Beschreibung

- Hohe Drehmomente durch größere Verzahnungsbreiten in der ersten Getriebestufe
- Gute Stoßfestigkeit durch Gehäuse aus gehärtetem Stahl mit Geradverzahnung in der Abtriebsstufe
- Hohe Laufruhe aufgrund schrägverzahnt ausgeführter erster Getriebestufe
- Planetenräder aus gleitoptimiertem Kunststoff in der ersten Getriebestufe unterstützen die Laufruhe
- Großer Wirkdurchmesser durch Radialverschraubung

Тур			Performax	®Plus 63.1				Perf	ormax®Plus	63.2		
Untersetzung		3,20	5,00	9,00	17,0	21,3	30,0	38,3	54,0	72,3	102	204
Stufenzahl		1	1	1	1	2	2	2	2	2	2	2
Wirkungsgrad		0,90	0,90	0,90	0,90	0,81	0,81	0,81	0,81	0,81	0,81	0,81
Max. Eingangsdrehzahl (n ₁)	min ⁻¹						6 000					
Nennabtriebsmoment (M _{ab})	Nm	6,50	11,9	7,60	4,40	45,2	64,0	28,9	41,0	16,9	23,9	27,4
Kurzzeitmoment (M_{max})	Nm	16,3	29,8	19,0	11,0	113	160	72,3	102,5	42,3	59,8	68,5
Getriebespiel	0						0,7 1,2					
Zul. Betriebstemperaturbereich	°C						-20 +80					
Betriebsart							S1					
Schutzart							IP 50					
Gewicht	kg	0,66	0,66	0,66	0,66	1,20	1,20	1,20	1,20	1,20	1,20	1,20
Wellenbelastung radial / axial	N						350 / 500					
Lebensdauer	h						5 000					
Schmierung						Fettschmie	erung auf Le	bensdauer				
Einbaulage							beliebig					
Länge	mm	57,7	57,7	57,7	57,7	79,1	79,1	79,1	79,1	79,1	79,1	79,1

- ① Passfeder DIN 6885 A-5x5x28
- 2 4 x M5, 10 tief

500 N 350 N 19 mm

Bei Nenndrehzahl, Betriebsfaktor $C_{\rm B}$ =1 und einer Lebensdauererwartung L_{10} von 5 000 h (bei $T_{\rm U}$ max. 40°C im Nennbetrieb)

Länge Motor-Getriebe-Kombinationen

Maßangaben in mm

		Länge L	1-9	stufige Un	tersetzun	gen	Länge L	2-	stufige Un	tersetzun	gen			
		1-stufig	3,20	5,00	9,00	17,0	2-stufig	21,3	30,0	38,3	54,0	72,3	102	204
ECI-63.20-K1-PP63	24V	162.0	•	•	•	•	105.3	•	•	•	•	•	•	Х
ECI-63.20-K1-PP63	48V	163,8	•	•	•	•	185,2	•	•	•	•	•	•	Х
ECL 62 / 0 //1 PD62	24V	183,8	•	0	•	X	205.2	•	0	•	•	X	Х	Х
ECI-63.40-K1-PP63	48V	183,8	•	•	•	X	205,2	•	•	•	•	Х	Х	Х
ECI-63.60-K1-PP63	24V	203,8	•	•	•	X	225,2	•	•	•	•	X	Х	Х
ECI-03.00-K1-PP03	48V	203,0	•	0	•	X	225,2	•	0	•	•	X	Х	Х
	24V		•	•	•	•		•	•	•	•	•	•	X
ECI-63.20-K3-PP63	48V	176,2	•	•	•	•	197,6	•	•	•	•	•	•	Х
ECL 63 (0 K3 PD63	24V	106.3	•	•	•	Х	217.6	•	•	•	•	Χ	Х	Х
ECI-63.40-K3-PP63	48V	196,2	•	•	•	Х	217,6	•	•	•	•	Х	Х	Х
ECI-63.60-K3-PP63	48V	216,2	•	•	•	X	237,6	•	•	•	•	X	Χ	Х
- CI CO OO IVI DDCO	24V	1762	•	•	•	•	107.6	•	•	•	•	•	•	Х
ECI-63.20-K4-PP63	48V	176,2	•	•	•	•	197,6	•	•	•	•	•	•	X
ECL 63 / 0 K/ DD63	24V	106.3	•	0	•	Х	217.6	•	0	•	•	Х	Х	Х
ECI-63.40-K4-PP63	48V	196,2	•	•	•	X	217,6	•	•	•	•	Х	Х	Х
ECI-63.60-K4-PP63	48V	216,2	•	0	•	Χ	237,6	•	0	•	•	Χ	Χ	Х
	24V		•	•	•	•		•	•	•	•	•	•	Х
ECI-63.20-K5-PP63	48V	169,7	•	•	•	•	191,1	•	•	•	•	•	•	X
ECL 63 / 0 KE DD63	24V	100.7	•	•	•	Х	211.1	•	•	•	•	Χ	Х	Х
ECI-63.40-K5-PP63	48V	189,7	•	•	•	Х	211,1	•	•	•	•	Х	Х	Х
ECI-63.60-K5-PP63	48V	209,7	•	•	•	X	231,1	•	•	•	•	X	Х	Х
	24V		•	•	•	Χ		•	•	•	•	Χ	X	X
ECI-80.20-K1-PP63	48V	146,7	•	•	•	Х	168,1	•	•	•	•	Х	Х	Х
EGI 00 / 0 / 0 PE	24V	1667	•	•	•	X	100.1	•	•	•	•	Х	Х	Х
ECI-80.40-K1-PP63	48V	166,7	•	•	•	Х	188,1	•	•	•	•	X	X	Х
ECI-80.60-K1-PP63	48V	186,7	•	•	X	Х	208,1	•	•	X	X	Х	Х	Х

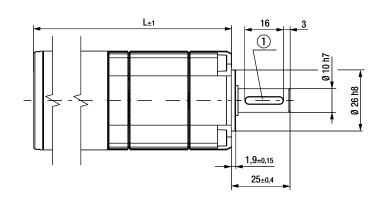
Änderungen vorbehalten

Standard

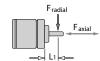
O Vorzugstyp

auf Anfrage

Planetengetriebe Optimax 42


Beschreibung

- Extrem überlastfähiges Getriebekonzept für hohe Spitzenlasten
- Robustes Getriebe für lange Lebensdauer
- Modularer Aufbau und Schnittstellen für maximale Flexibilität innerhalb des modularen Systembaukastens
- Hoher Wirkungsgrad bei kompakter Bauform
- Geräuschoptimierte Variante mit Planetenrädern aus hochfestem Kunststoff


www.ebmpapst.com/eci-motoren

Тур			Optimax 42.1			Optim	ax 42.2	
Untersetzung		3,00	5,00	9,00	9,00	15,0	25,0	45,0
Stufenzahl		1	1	1	2	2	2	2
Wirkungsgrad		0,90	0,90	0,90	0,81	0,81	0,81	0,81
Max. Eingangsdrehzahl (n ₁)	min ⁻¹				6 000			
Nennabtriebsmoment (M _{ab}) ¹⁾	Nm	16 ²⁾ (5,3) ³⁾	16 ²⁾ (5,3) ³⁾	102) (2,5)3)	272) (14)3)	272) (23)3)	272) (23)3)	232) (11)3)
Kurzzeitmoment (M _{max})	Nm	482) (16)3)	482) (16)3)	302) (7,5)3)	812) (42)3)	812) (69)3)	812) (69)3)	692) (32)3)
Getriebespiel	0	< 0,9	< 0,9	< 0,9	< 1,2	< 1,2	< 1,2	< 1,2
Zul. Betriebstemperaturbereich	°C				-30 +90			
Betriebsart					S1/S3			
Schutzart					IP 54			
Gewicht	kg	0,45	0,45	0,45	0,70	0,70	0,70	0,70
Wellenbelastung radial / axial	N				210 / 210			
Lebensdauer	h				10 000			
Schmierung				Fettsch	mierung auf Lebe	nsdauer		
Einbaulage					beliebig			
Länge	mm	51,2	51,2	51,2	72,2	72,2	72,2	72,2

²⁾ Standard: aus hochfestem Stahl / Wert gilt für Planetenräder (erste Stufe) ³⁾ Optional: aus hochfestem Kunststoff / Wert gilt für Planetenräder (erste Stufe)

- ① Passfeder DIN 6885 A-3x3x16
- ② 4 x M4, 10 tief

210 N 210 N 12 mm

Bei Nenndrehzahl, Betriebsfaktor $\rm C_B$ =1 und einer Lebensdauererwartung $\rm L_{10}$ von 10 000 h (bei $\rm T_U$ max. 40°C im Nennbetrieb)

Länge Motor-Getriebe-Kombinationen

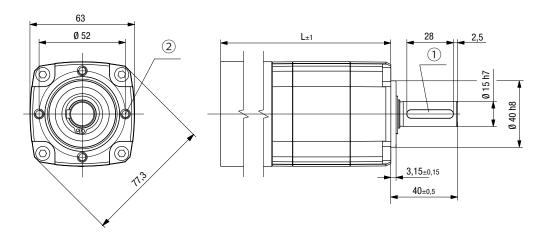
Maßangaben in mm

		Länge L	1-stu	fige Untersetzur	ngen	Länge L		2-stufige Unt	ersetzungen	
		1-stufig	3,00	5,00	9,00	2-stufig	9,00	15,0	25,0	45,0
ECL / 2 20 1/1 0/2	24V	155.3	•	•	•	176.2	•	•	•	•
ECI-42.20-K1-O42	48V	155,2	•	•	•	176,2	•	•	•	•
FCI / 2 / 0 / 1 O / 2	24V	175.2	•	0	Х	106.3	•	•	0	X
ECI-42.40-K1-O42	48V	175,2	•	•	Χ	196,2	•	•	•	X

Änderungen vorbehalten

Standard

Planetengetriebe Optimax 63


www.ebmpapst.com/eci-motoren

Beschreibung

- Extrem überlastfähiges Getriebekonzept für hohe Spitzenlasten
- Robustes Getriebe für lange Lebensdauer
- Modularer Aufbau und Schnittstellen für maximale Flexibilität innerhalb des modularen Systembaukastens
- Hoher Wirkungsgrad bei kompakter Bauform
- Geräuschoptimierte Variante mit Planetenrädern aus hochfestem Kunststoff
- Schutzklasse IP 50 (optional IP 54)

Тур			Optim	ax 63.1			Optimax 63.2	
Untersetzung		3,00	5,00	9,00	9,00	15,0	25,0	45,0
Stufenzahl		1	1	1	2	2	2	2
Wirkungsgrad		0,90	0,90	0,90	0,81	0,81	0,81	0,81
Max. Eingangsdrehzahl (n ₁)	min ⁻¹				6 000			
Nennabtriebsmoment (M _{ab}) 1)	Nm	40,02) (13,0)3)	40,02) (13,0)3)	25,02) (6,00)3)	68,02) (35,0)3)	68,0 ²⁾ (35,0) ³⁾	68,0 ²⁾ (35,0) ³⁾	58,0 ²⁾ (27,0) ³⁾
Kurzzeitmoment (M _{max})	Nm	1202) (39,0)3)	1202) (39,0)3)	75,02) (18,0)3)	81,02 (42)3	1502) (105)3)	1502) (150)3)	1502) (81,0)3)
Getriebespiel	0	< 0,9	< 0,9	< 0,9	< 1,2	< 1,2	< 1,2	< 1,2
Zul. Betriebstemperaturbereich	°C				-30 +90			
Betriebsart					S1/S3			
Schutzart					IP 50			
Gewicht	kg	1,30	1,30	1,30	1,90	1,90	1,90	1,90
Wellenbelastung radial / axial	N				500 / 500			
Lebensdauer	h				10 000			
Schmierung				Fettsch	mierung auf Lebe	nsdauer		
Einbaulage					beliebig			
Länge	mm	71,2	71,2	71,2	102,4	102,4	102,4	102,4

²⁾ Standard: aus hochfestem Stahl / Wert gilt für Planetenräder (erste Stufe) ³⁾ Optional: aus hochfestem Kunststoff / Wert gilt für Planetenräder (erste Stufe)

- ① Passfeder DIN 6885 A-5x5x28
- ② 4 x M4, 15 tief

 F_{axial} : 500 N F_{radial} : 500 N L_1 : 20 mm Bei Nenndrehzahl, Betriebsfaktor $C_{\rm B}$ =1 und einer Lebensdauererwartung $L_{\rm 10}$ von 10 000 h (bei $T_{\rm U}$ max. 40°C im Nennbetrieb)

Länge Motor-Getriebe-Kombinationen

Maßangaben in mm

		Länge L	1-stu	ufige Untersetzu	ngen	Länge L		2-stufige Untersetzungen			
		1-stufig	3,00	5,00	9,00	2-stufig	9,00	15,0	25,0	45,0	
ECI-63.20-K1-O63	24V	177.3	•	•	•	200.5	•	•	•	•	
ECI-63.20-K1-U63	48V	177,3	•	•	•	208,5	•	•	•	•	
ECI-63.40-K1-O63	24V	197,3	•	0	•	228,5	•	•	0	•	
ECI-63.40-K1-U63	48V	197,3	•	•	•	228,5	•	•	•	•	
ECI-63.60-K1-O63	24V	217,3	•	•	X	248,5	•	•	•	Х	
ECI-63.60-K1-O63	48V	217,3	•	0	Х	248,5	•	•	0	Χ	
EGI 63 20 1/2 062	24V	100 7	•	•	•	222.0	•	•	•	•	
ECI-63.20-K3-O63	48V	189,7	•	•	•	220,9	•	•	•	•	
ECI-63.40-K3-O63	24V	200.7	•	•	•	2/00	•	•	•	•	
ECI-63.40-K3-O63	48V	209,7	•	•	•	240,9	•	•	•	•	
ECI-63.60-K3-O63	48V	229,7	•	•	Х	260,9	•	•	•	Χ	
	24V		•	•	•		•	•	•	•	
ECI-63.60-K4-O63	48V	189,7	•	•	•	220,9	•	•	•	•	
EGI 62 40 44 062	24V	200 7	•	0	•	2/00	•	•	0	•	
ECI-63.40-K4-O63	48V	209,7	•	•	•	240,9	•	•	•	•	
ECI-63.60-K4-O63	48V	229,7	•	0	X	260,9	•	•	0	Х	
	24V		•	•	•		•	•	•	•	
ECI-63.20-K5-O63	48V	183,2	•	•	•	214,4	•	•	•	•	
EGI 62 40 45 062	24V	202.2	•	0	•	22//	•	•	0	•	
ECI-63.40-K5-O63	48V	203,2	•	•	•	234,4	•	•	•	•	
ECI-63.60-K5-O63	48V	223,2	•	0	X	254,4	•	•	0	Х	
	24V	160.2	•	•	Х	101 (•	•	•	Х	
ECI-80.20-K1-O63	48V	160,2	•	•	Х	191,4	•	•	•	Х	
EGI 00 40 144 0	24V	100.0	•	0	Х	244	•	•	0	Х	
ECI-80.40-K1-O63	48V	180,2	•	•	Х	211,4	•	•	•	Х	
ECI-80.60-K1-O63	48V	200,2	•	0	Х	231,4	•	•	0	Х	

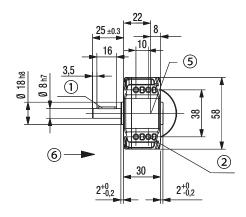
Änderungen vorbehalten

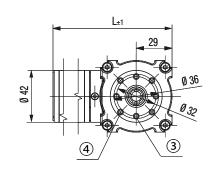
Standard

)

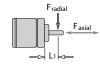
auf Anfrage

Kronenradgetriebe EtaCrown® 52


Mehrunter


www.ebmpapst.com/eci-motoren

Beschreibung


- Höchste Sicherheit in Auslegung und Betrieb sowie optimaler Vandalismusschutz, da keine Selbsthemmung aufgrund hohem Wirkungsgrad der Kronenradtechnologie
- Platzsparender Einbau aufgrund Null-Achsversatz und symmetrischem Aufbau
- Flexible Einsatzmöglichkeiten mit verschiedenen optionalen Wellenabgängen und verfügbaren Wellengeometrien
- Weiterer Untersetzungsbereich durch Möglichkeit des Vor- und/ oder Nachschaltens einer Planetenstufe
- Hohe Radiallasten durch doppelte Kugellagerung der Abtriebswelle

Тур			EtaCrov	vn® 52.1			EtaCrown® 52.2	
Untersetzung		4,10	6,70	10,1	21,2	33,3	60,0	113
Stufenzahl		1	1	1	2	2	2	2
Wirkungsgrad		0,90	0,90	0,90	0,81	0,81	0,81	0,81
Max. Eingangsdrehzahl (n_1)	min ⁻¹				6 000			
Nennabtriebsmoment (M _{ab})	Nm	0,21	0,34	0,52	0,98	1,54	2,77	3,48
Kurzzeitmoment (M _{max})	Nm	0,53	0,85	1,30	2,45	3,85	6,93	8,70
Getriebespiel	•	° 0,55 1,1						
Zul. Betriebstemperaturbereich	°C				-20 +80			
Betriebsart					S1			
Schutzart					IP 50			
Gewicht	kg	0,40	0,40	0,40	0,65	0,65	0,65	0,65
Wellenbelastung radial / axial	N	200 / 150	200 / 150	210 / 150	240 / 150	270 / 150	350 / 150	440 / 150
Lebensdauer	h				5 000			
Schmierung				Fettsch	mierung auf Lebei	nsdauer		
Einbaulage					beliebig			
Länge	mm	65,9	65,9	65,9	94,6	94,6	94,6	94,6

- 1 Passfeder DIN 6885 A-3x3x16
- 2 4 x M4, 6,5 tief (auf allen Stirnseiten)
- 3 8 x M4, 6,5 tief (beidseitig)
- 4 Bohrung entfällt auf der gegenüberliegenden Seite
- Motormittelpunkt
- 6 Vorzugslastrichtung

150 N s. Tabelle

Bei Nenndrehzahl, Betriebsfaktor $C_{\rm B}$ =1 und einer Lebensdauererwartung L_{10} von 5 000 h (bei $T_{\rm U}$ max. 40°C im Nennbetrieb)

Wellenabgang rechts (W05) (Standard) Wellenabgang links (W06) Wellenabgang beidseitig (W07) 1 1 Vorzugslastrichtung

Länge Motor-Getriebe-Kombinationen

Maßangaben in mm

		Länge L	1-stu	1-stufige Untersetzungen		Länge L	änge L 2-stufige Untersetzungen			
		1-stufig	4,10	6,70	10,1	2-stufig	21,2	33,3	60,0	113
FCL / 2 20 K1 FF2	24V	160.0	0	X	Х	100.6	0	0	X	Χ
ECI-42.20-K1-E52	48V	169,9	•	X	Х	198,6	•	•	X	Χ
FCL / 2 / 0 K1 FF2	24V	100.0	X	X	Х	210.6	Χ	Х	X	Χ
ECI-42.40-K1-E52	48V	189,9	X	X	Х	218,6	Χ	X	X	Χ

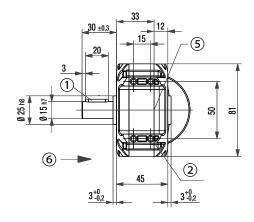
Änderungen vorbehalten

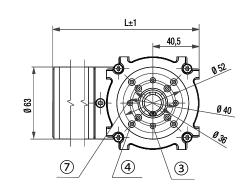
Standard

Vorzugstyp

auf Anfrage

Kronenradgetriebe EtaCrown® 75


Mehr unter

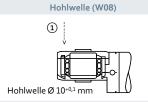

www.ebmpapst.com/eci-motoren

Beschreibung

- Höchste Sicherheit in Auslegung und Betrieb sowie optimaler Vandalismusschutz, da keine Selbsthemmung aufgrund hohem Wirkungsgrad der Kronenradtechnologie
- Platzsparender Einbau aufgrund Null-Achsversatz und symmetrischem Aufbau
- Flexible Einsatzmöglichkeiten mit verschiedenen optionalen Wellenabgängen und verfügbaren Wellengeometrien
- Weiterer Untersetzungsbereich durch Möglichkeit des Vor- und/ oder Nachschaltens einer Planetenstufe
- Hohe Radiallasten durch doppelte Kugellagerung der Abtriebswelle

Тур			EtaCrov	vn® 75.1			EtaCrown® 75.2	
Untersetzung		4,10	6,70	10,1	20,3	33,3	60,0	113
Stufenzahl		1	1	1	2	2	2	2
Wirkungsgrad		0,90	0,90	0,90	0,81	0,81	0,81	0,81
Max. Eingangsdrehzahl (n_1)	min ⁻¹				6 000			
Nennabtriebsmoment (M _{ab})	Nm	6,00	5,00	2,43	10,0	10,0	10,0	10,0
Kurzzeitmoment (M _{max})	Nm	15,0	12,5	6,08	25,0	25,0	25,0	25,0
Getriebespiel	•	° 0,55 1,1						
Zul. Betriebstemperaturbereich	°C				-20 +80			
Betriebsart					S1			
Schutzart					IP 50			
Gewicht	kg	0,90	0,90	0,90	1,30	1,30	1,30	1,30
Wellenbelastung radial / axial	N	390 / 500	380 / 500	370 / 500	450 / 500	460 / 500	580 / 500	700 / 500
Lebensdauer	h				5 000			
Schmierung				Fettsch	mierung auf Lebe	nsdauer		
Einbaulage					beliebig			
Länge	mm	91	91	91	133,3	133,3	133,3	133,3

- 1 Passfeder DIN 6885 A-5x5x20
- 2 4 x M5, 6,5 tief (auf allen Stirnseiten)
- 3 4 x M4, 6,5 tief (beidseitig)
- 4 8x M5, 6,5 tief
- Motormittelpunkt
- 6 Vorzugslastrichtung
- $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} Bohrung entfällt auf gegen "berliegender Seite" \\ \hline \end{tabular}$



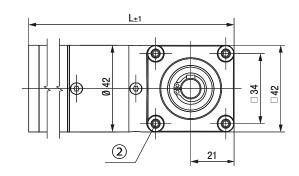
500 N s. Tabelle Bei Nenndrehzahl, Betriebsfaktor $C_{\rm B}$ =1 und einer Lebensdauererwartung L_{10} von 5 000 h (bei $T_{\rm U}$ max. 40°C im Nennbetrieb)

Länge Motor-Getriebe-Kombinationen

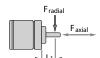
Maßangaben in mm

		Länge L	1-stu	fige Untersetzu	ingen	Länge L		2-stufige Unt	tersetzungen	
		1-stufig	4,10	6,70	10,1	2-stufig	20,3	33,3	60,0	113
ECI-63.20-K1-E75	24V	197,1	•	•	•	220 /	•	•	X	X
ECI-63.20-K1-E/5	48V	197,1	•	•	•	239,4	•	•	X	Х
ECI-63.40-K1-E75	24V	217.1	0	•	Х	250.4	0	0	X	Х
ECI-63.4U-K1-E/5	48V	217,1	•	•	Х	259,4	•	X	X	Х
ECI-63.60-K1-E75	24V	237,1	•	•	Х	279,4	•	X	X	Х
ECI-03.00-K1-E/3	48V	237,1	0	•	X	2/9,4	0	0	Х	Х
FGI 62 20 K2 F75	24V	200 5	•	•	•	251.0	•	•	X	Χ
ECI-63.20-K3-E75	48V	209,5	•	•	•	251,8	•	•	Х	Х
561 62 (0.1/2.575	24V	220 5	• • X	•	X	Х	Х			
ECI-63.40-K3-E75	48V	229,5	•	•	Χ	271,8	•	X	Х	Х
ECI-63.60-K3-E75	48V	249,5	•	•	X	291,8	•	X	Х	Х
	24V		•	•	•		•	•	Χ	Х
ECI-63.20-K4-E75	48V	209,5	•	•	•	251,8	•	•	X	Х
	24V		0	•	Χ		0	0	X	Х
ECI-63.40-K4-E75	48V	229,5	•	•	Х	271,8	•	X	X	Х
ECI-63.60-K4-E75	48V	249,5	0	•	Х	291,8	0	0	Χ	Х
	24V		•	•	•		•	•	Χ	Χ
ECI-63.20-K5-E75	48V	203	•	•	•	245,3	•	•	X	Х
EGI 63 / 0 / E E==	24V	222	•	•	Χ	265.2	•	X	Х	Х
ECI-63.40-K5-E75	48V	223	•	•	Х	265,3	•	X	Х	Х
ECI-63.60-K5-E75	48V	243	•	•	X	285,3	•	X	Х	Х

Kronenradgetriebe EtaCrown®Plus 42


Mehr unter

www.ebmpapst.com/eci-motoren


Beschreibung

- Kompakte Bauform aufgrund Kombination der Kronenrad- und Planetenstufe in einem Gehäuse
- Keine Selbsthemmung aufgrund hohem Wirkungsgrad der Kronenradtechnologie
- Hohe Drehmomente durch Verwendung von 5 geradverzahnten Planetenrädern aus gehärtetem Sinterstahl in der integrierten Planetenabtriebsstufe
- Weiterer Untersetzungsbereich durch Möglichkeit des Vorschaltens einer Planetenstufe
- Verbesserte Laufruhe durch wälzoptimierte Auslegung der Kronenradstufe bei Verwendung vorgeschalteter schrägverzahnter Planetenstufe aus gleitoptimiertem Kunststoff

Тур			EtaCrown	®Plus 42.3		
Untersetzung		54,0	84,8	153	289	
Stufenzahl			3	}		
Wirkungsgrad			0,	73		
Max. Eingangsdrehzahl (n ₁)	min ⁻¹		6 0	00		
Nennabtriebsmoment (M _{ab})	Nm	10,00	10,00	6,70	8,40	
Kurzzeitmoment (M_{max})	Nm	25,0	25,0	16,8	21,0	
Getriebespiel	o	0,7 1,2				
Zul. Betriebstemperaturbereich	°C	°C -20 +80				
Betriebsart			S	1		
Schutzart			IP	50		
Gewicht	kg		0,	45		
Wellenbelastung radial / axial	N		300 /	200		
Lebensdauer	h		5 0	00		
Schmierung			Fettschmierung	auf Lebensdauer		
Einbaulage			belie	ebig		
Länge	mm		79	,8		

- ① Passfeder DIN 6885 A-4x4x12
- ② 4 x M4, 8 tief

Bei Nenndrehzahl, Betriebsfaktor 200 N $C_{\rm B}$ =1 und einer Lebensdauererwartung L_{10} von 5 000 h (bei $T_{\rm U}$ max. 40°C im Nennbetrieb) 300 N 10 mm

Länge Motor-Getriebe-Kombinationen

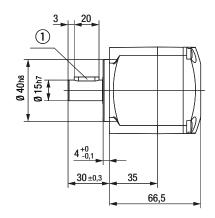
Maßangaben in mm

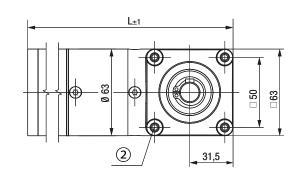
		Länge L		3-stufige U		
		3-stufig	54,0	84,8	153	289
ECI-42.20-K1-EP42	24V	102.0	•	•	×	X
ECI-42.20-N1-EP42	48V	183,8	•	•	×	X
ECL / 2 / 0 / 4 ED / 2	24V		0	0	×	X
ECI-42.40-K1-EP42	48V	203,8	•	•	X	X

Änderungen vorbehalten

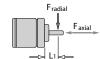
Standard

Kronenradgetriebe EtaCrown®Plus 63


Mehr unter


www.ebmpapst.com/eci-motoren

Beschreibung


- Kompakte Bauform aufgrund Kombination der Kronenrad- und Planetenstufe in einem Gehäuse
- Keine Selbsthemmung aufgrund hohem Wirkungsgrad der Kronenradtechnologie
- Hohe Drehmomente durch Verwendung von 5 geradverzahnten Planetenrädern aus gehärtetem Sinterstahl in der integrierten Planetenabtriebsstufe
- Weiterer Untersetzungsbereich durch Möglichkeit des Vorschaltens einer Planetenstufe
- Verbesserte Laufruhe durch wälzoptimierte Auslegung der Kronenradstufe bei Verwendung vorgeschalteter schrägverzahnter Planetenstufe aus gleitoptimiertem Kunststoff

Тур		EtaCrown®Plus 63.3						
Untersetzung		54,0	84,8	153	289			
Stufenzahl								
Wirkungsgrad			0,	73				
Max. Eingangsdrehzahl (n ₁)	min ⁻¹		6 0	00				
Nennabtriebsmoment (M _{ab})	Nm	40,0	40,0	30,1	29,1			
Kurzzeitmoment (M _{max})	Nm	100	100	75,3	72,8			
Getriebespiel	•	0,7 1,2						
Zul. Betriebstemperaturbereich	°C -20 +80							
Betriebsart			S	1				
Schutzart			IP	50				
Gewicht	kg		1,	00				
Wellenbelastung radial / axial	N		600	300				
Lebensdauer	h		5 0	00				
Schmierung			Fettschmierung	auf Lebensdauer				
Einbaulage			beli	ebig				
Länge	mm		110	5,3				

- ① Passfeder DIN 6885 A-5x5x20
- 2 4 x M5, 10 tief

 $\begin{array}{lll} F_{axiai} & 300 \ N & Bei \ Nenndrehzahl, \ Betriebsfaktor \\ F_{radiai} & 600 \ N & C_B=1 \ und \ einer \ Lebensdauererwartung \\ L_1: & 15 \ mm & Nennbetrieb) \end{array}$

Länge Motor-Getriebe-Kombinationen

Maßangaben in mm

		Länge L		3-stufige Un	ntersetzungen	
		3-stufig	54,0	84,8	153	289
ECI-63.20-K1-EP63	24V	222 /	•	•	•	X
ECI-03.20-K1-EP03	48V	222,4	•	•	•	X
ECI-63.40-K1-EP63	24V	242,4	0	0	X	X
ECI-03.40-K1-EP03	48V	242,4	•	•	X	X
ECI-63.60-K1-EP63	24V	262,4	•	•	X	X
ECI-03.00-K1-EF03	48V	202,4	0	0	X	Χ
	24V		•	•	•	X
ECI-63.20-K3-EP63	48V	234,8	•	•	•	X
	24V		•	•	X	X
ECI-63.40-K3-EP63	48V	254,8	•	•	X	X
ECI-63.60-K3-EP63	48V	274,8	•	•	X	Х
	24V		•	•	•	X
ECI-63.20-K4-EP63	48V	234,8	•	•	•	X
	24V		0	0	X	X
ECI-63.40-K4-EP63	48V	254,8	•	•	X	X
ECI-63.60-K4-EP63	48V	274,8	0	0	X	X
ECI-05.00-104-EI 05	101	2/4,0	<u> </u>	<u> </u>	X	
ECI-63.20-K5-EP63	24V	228,3	•	•	•	X
EC. 03.20 NJ-EI 03	48V	220,3	•	•	•	X
ECI-63.40-K5-EP63	24V	248,8	•	•	X	X
20. 33.40-13-21 03	48V	240,0	•	•	X	X
ECI-63.60-K5-EP63	48V	268,3	•	•	X	X

Änderungen vorbehalten

Standard

0

O Vorzugstyp

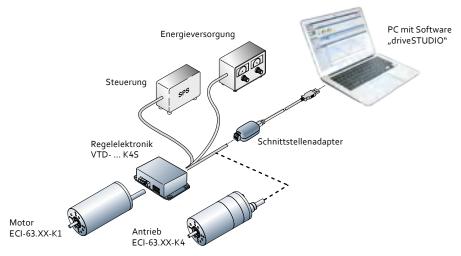
Χ

auf Anfrage

ubehör

Zubehör

ebmpapst


the engineer's choice

	Seite
Inbetriebnahme-Tools	74
Bremsen	76
Magnetische Gebersysteme	78

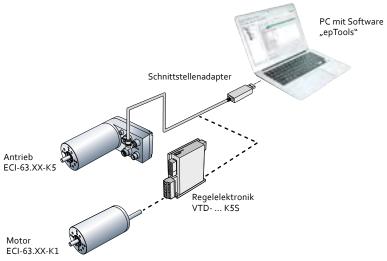
behör

Inbetriebnahme-Tools K4

Parametrierung und Inbetriebnahme

Die RS485-Schnittstelle dient als Parametrier- und Diagnose-Schnittstelle. Für die Bedienung kann die frei verfügbare PC-Software "driveSTUDIO" benutzt werden. Dazu wird ein PC und der ebm-papst USB-RS485-Adapter benötigt. Laden Sie Ihr ausführliches Betriebshandbuch und die PC-Software "driveSTUDIO" unter www.ebmpapst.com herunter.

Schnittstellen-Adapter für PC-Software "driveSTUDIO"	Material-Nr.
USB-RS485-Adapter	914 0000 403


Elektrischer Ans	Elektrischer Anschluss		
PIN	Anschluss		
Α	RS485+		
В	RS485-		
×			

Funktionsbeschreibung der LED-Anzeigen

LED-Benennung	Farbe	Anzeige	Funktionszuordnung
T.D.	blinkt	blinkt bei ausgehender Nachricht	
TxD	rot	leuchtet nicht	keine ausgehende Nachricht
	blinkt	blinkt bei ausgehender Nachricht	
RxD	grün	leuchtet nicht	keine ausgehende Nachricht
ON	orange	leuchtet	Normalbetrieb

Inbetriebnahme-Tools K5

Parametrierung und Inbetriebnahme

Die CAN Schnittstelle dient als Parametrier, Prozess- und Diagnose-Schnittstelle. Dazu wird ein PC und der ebm-papst USB-CAN-Stick benötigt. Es kann mit der frei verfügbaren PC-Software "epTool" betrieben werden. Laden Sie Ihr ausführliches Betriebshandbuch und die PC Software epTools unter www.ebmpapst.com herunter.

Schnittstellen-Adapter für PC-Software "EP-Tools"	Material-Nr.
USB für CANStick	914 0000 401

Elektrischer A	Anschluss
X1	Anschluss
1	res.
2	CAN Hi
3	CAN Lo
4	res.
5	CAN GND

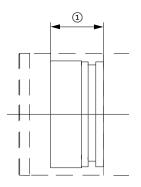
Funktionsbeschreibung der LED-Anzeigen

LED-Benennung	Farbe	Anzeige	Funktionszuordnung
		leuchtet	Normalbetrieb
LED0 "Power"	grün	leuchtet nicht	Versorgungsspannung fehlt
		blinkt	Bootloader-Modus (keine Firmware)
1554 C »	aalb	leuchtet nicht	Normalbetrieb
LED1 "State"	gelb	blinkt	Bootloader-Modus (blinkt bei eingehender Nachricht)
		leuchtet	Fehler
LED2 "Error"	rot	leuchtet nicht	kein Fehler (Normalbetrieb)
LED2 D.//		blinkt	blinkt bei eingehender Nachricht
LED3 "Rx"	grün	leuchtet nicht	keine eingehende Nachricht
,		blinkt	blinkt bei ausgehender Nachricht
LED4 "Tx"	gelb	leuchtet nicht	keine ausgehende Nachricht

Beschreibung

- Bremse nach Prinzip Federkraft
- Einscheibenbremse mit 2 Reibflächen
- Bremsmoment wirkt im stromlosen Zustand
- Bremskraft wird durch elektromagnetische Kraft aufgehoben
- Haltebremse mit Not-Stopp-Funktion
- Stromlos betätigte Bremse mit hoher Leistungsdichte
- Reduzierte Massenträgheit für optimale Dynamik

Mahruntar


www.ebmpapst.com/eci-motoren

Тур		integriertes RFK 0,3 Nm Bremsmodul ECI 42	integriertes RFK 1,0 Nm Bremsmodul ECI 63	externes RFK 1,0 Nm Bremsmodul ECI 63	externes RFK 1,0 Nm Bremsmodul ECI 80
Nennspannung	V DC	24	24	24	24
Nennleistung	W	6	9	9	16
Bremsmoment	Nm	0,3	1	1	5
Schließ-, Anzugszeit	ms	25	20	20	40
Öffnungs-, Abfallzeit	ms	85	60	60	52

Änderungen vorbehalten

Technische Zeichnung Maßangaben in mm

Abbildung integrierte Bremse für ECI 42.XX und ECI 63.XX-K3/K4/K5 Abbildung Integrierte Bremse für ECI 63.XX-K1

- ① Durch den Einbau des Bremsenmoduls verlängert sich das Antriebsgehäuse um 57 mm
- ② Durch den Einbau des Bremsenmoduls verlängert sich das Antriebsgehäuse um 20 mm

Abbildung angebaute Bremse für ECI 63.XX-K1

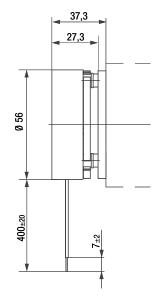
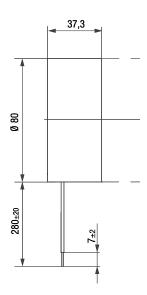



Abbildung angebaute Bremse für ECI 80

Elektrischer Anschluss

Stecker Bremse integriert (ECI 42.XX)

	Pin	Anschluss	Funktion
Bremse ntegriert	nn¹)	+24 V	Versorgungsspannung
Brei	nn¹)	GND	Ground
1) Abhäng	ig von der Ge	samtausstattung Moto	or

Kabel Bremse angebaut (ECI 63.XX)

	Farbe	Anschluss	Funktion
Bremse angebaut	violett	+24 V	Versorgungsspannung
Brer	graurosa	GND	Ground

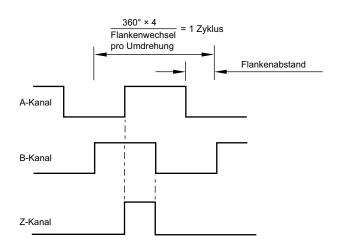
Litzen
Bremse integriert (ECI 63.XX / ECI80.XX)

	Farbe	Anschluss	Funktion
Bremse angebaut	rot	+24 V	Versorgungsspannung
Brer	schwarz	GND	Ground

Magnetische Gebersysteme

Beschreibung

- Magnetischer 3-Kanal Inkrementalgeber
- Durch eine endsprechende Auswertung, wird eine Auflösung von 4.096 Inkrementen pro Umdrehungen erreicht
- Drehgeber arbeitet berührungslos und verschleißfrei
- Temperaturbereich -40 °C ... +105 °C
- Andere Auflösungen und Schnittstellen möglich


Mehr unter

www.ebmpapst.com/eci-motoren

Тур		RM22 / RMC22
mpulszahl		4,096 pro Umdrehung
Ausgangssignal A, B, Z		3 Rechtecksignale, Kanal A, B (90° Phasenversatz) und Index
Grenzfrequenz (f)	kHz	0,5
Versorgungsspannung (U _B)		+5 ±10%
Stromaufnahme (I _B)	mA	typ. 30
Genauigkeit		±0,5°
Hysterese		Typ. 0,17°
Elektrischer Anschluss		Molex: 501568-1107
Steckertyp		Molex: 501330-110 mit Kontakt 501344-XX
Gewicht	kg	0,02
Schutzart	IP	54 / 40

Vorläufige Daten, Änderungen vorbehalten

Signalverlauf

Technische Zeichnung Maßangaben in mm

Abbildung RM22 für ECI 63 und ECI 80

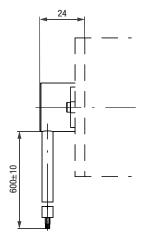


Abbildung RMC22 für ECI 63 und ECI 80

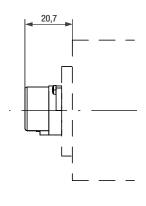
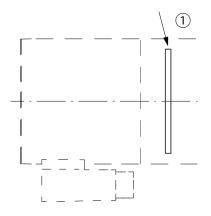
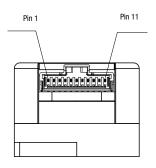
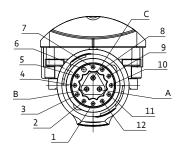



Abbildung mit integriertem Encoder für ECI 42


① Durch den Einbau des Encoders verlängert sich das Antriebsgehäuse um 57 mm

Elektrischer Anschluss angebauter Encoder


Abbildung RM22

	Pin	Farbe	Funktion	
Signal	1	weiss	Z	
	2	grün	B)	
	3	grau	Α	
	4	rot	V_{dd}	
	5	braun	Z-	
	6	gelb	B-	
	7	rosa	A-	
	8	blau	GND	
	9			
	10	nicht genutzt		
	11			

Elektrischer Anschluss integrierter Encoder für ECI 42

	Pin	Anschluss	Funktion
	7	Α	Geber Kanal A
	8	/A	Geber Kanal A negiert
ber	9	В	Geber Kanal B
Gebe	10	/B	Geber Kanal B negiert
	11	+5V	Versorgungsspannung
	12	GND	Masse

Betriebsfaktor, Lebensdauer, Wirkungsgrad

Der Betriebsfaktor C_B

Um eine einheitliche Lebensdauer von Getriebe und Motor zu erreichen, müssen die erforderlichen Drehmomente M um den jeweiligen Betriebsfaktor C_B bei den verschiedenen Betriebslasten erhöht werden, um das max. zul. Getriebedrehmoment $M_{2\,max}$ nicht zu überschreiten (siehe Tabelle unten).

Betriebsarten

Betriebsdauer in h/Tag			
3 h 8 h	24 h		
über 10 Schaltur	ngen/h		
1,00 1,20	1,52		
1,20 1,59	1,92		
1,30 1,52	1,82		
1,59 1,89	2,33		
1,52 1,82	2,22		
2,00 2,33	2,86		
	3 h 8 h 0 0 0 0 0 0 0 0 0		

Die Betriebsart

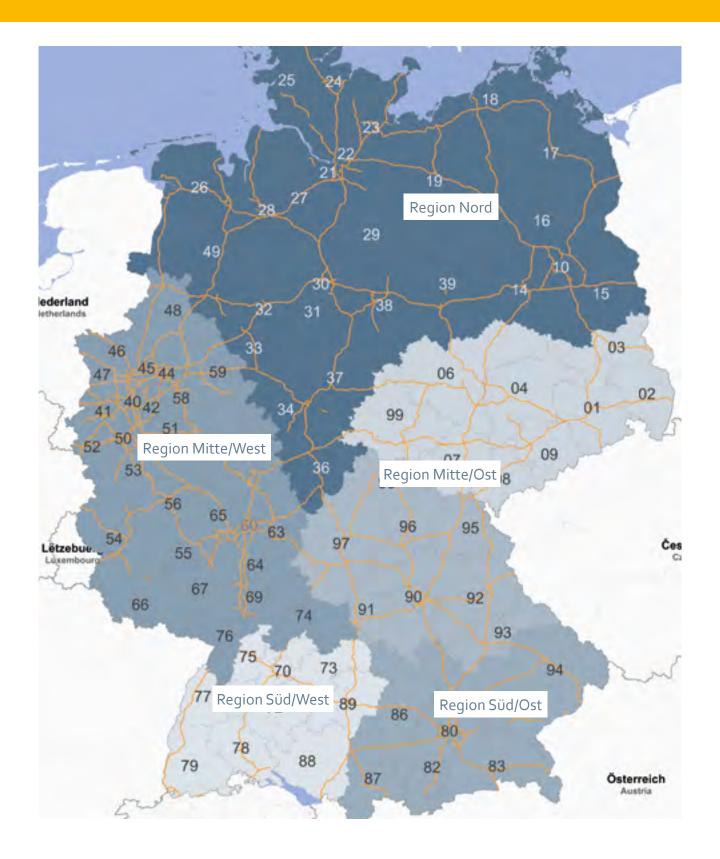
Die Definition der Betriebsart, in der ein Getriebemotor unter bestimmten Nennwerten betrieben werden kann, ist notwendig, um eine Überlastung des Motors und/oder des Getriebes auszuschließen. Die in diesem Katalog angegebenen Werte beziehen sich auf einen S1-Betrieb (Dauerbetrieb). Das bedeutet, dass der Getriebemotor dauerhaft mit den angegebenen Werten betrieben, im Kurzzeitbetrieb jedoch auch höher belastet werden kann. Für detailliertere Angaben diesbezüglich bitten wir Sie, sich mit uns in Verbindung zu setzen.

Die Lebensdauer

Die Lebensdauer wird von verschiedenen Bauteilen im Antrieb begrenzt. Die Bauteile der Getriebe unterliegen bei häufiger Überlast einem höheren Verschleiß als bei Nennlast. Extreme Umgebungs- und Betriebsbedingungen führen zu einer Reduzierung der für den Betrieb unter Betriebsfaktor $c_B = 1$ garantierten Lebensdauer.

Der Wirkungsgrad η (eta)

Der Wirkungsgrad pro Getriebestufe beträgt mindestens 90 %. Abhängig von der Verzahnungsauslegung und der Fertigungsqualität, können auch durchaus bessere Wirkungsgrade erzielt werden. Für mehrstufige Getriebe ergeben sich folgende Gesamtwirkungsgrade:


Gesamtwirkungsgrade				
für 1-stufige Getriebe	η = 0,9			
für 2-stufige Getriebe	$\eta = 0,9^2 = 0,81$			
für 3-stufige Getriebe	$\eta = 0.9^3 = 0.73$			
für 4-stufige Getriebe	η = 0,9 4 = 0,66			
für 5-stufige Getriebe	$\eta = 0.9^{5} = 0.59$			

Vertreting

Regionen in Deutschland

Vertretungen

ebm-papst weltweit

Deutschland

Region Nord Norderstedt

Breuell & Hilgenfeldt GmbH Udo Wildenblanck Regionalleitung Vertrieb Antriebstechnik Oststraße 96 22844 Norderstedt Phone +49 9123 945-7291 Fax +49 9123 945-5291 Udo.Wildenblanck@de.ebmpapst.com

Region Mitte / Ost ebm-papst St. Georgen GmbH & Co. KG Werk 7- Lauf

Florian Sonnenberg Industriestraße 9 91207 Lauf a.d. Pegnitz Phone +49 9123 945-7292 Fax +49 9123 945-5292 Info4@de.ebmpapst.com

- Region Mitte / West Hemsbach

Markus Psik
Am Dreispitz 16
69502 Hemsbach
Phone +49 9123 945-7293
Fax +49 9123 945-5293
Markus.Psik(@de.ebmpapst.com

Region Süd / West Ihringen

Mario Rudmann
Hauptstraße 27
79241 Ihringen
Phone +49 9123 945-7294
Fax +49 9123 945-5294
Mario.Rudmann@de.ebmpapst.com

Region Süd / Ost 2 Baierbrunn

Patrick Christleven
Bernhard-Pankok-Weg 4
82065 Baierbrunn
Phone +49 9123 945-7295
Fax +49 9123 945-5295
Patrick.Christleven@de.ebmpapst.com

Europa

- Frankreich

ebm-papst sarl Parc d'Activités Nord 1 rue Mohler – BP 62 67212 Obermai Cedex Phone +33 3 88 66 88 03 info@ebmpapst.fr www.ebmpapst.fr

- Großbritannien

ebm-papst UK Ltd. Chelmsford Business Park Chelmsford Essex CM2 5EZ UNITED KINGDOM Phone +44 1245 468555 Fax +44 1245 466336 sales@uk.ebmpapst.com www.ebmpapst.co.uk

- Italien

ebm-papst Srl Via Cornaggia 108 22076 Mozzate (Co) Phone +39 0331 8362013 Fax +39 0331 821510 info@it.ebmpapst.com www.ebmpapst.it

-■ Benelux

ebm-papst Benelux B.V.
Polbeemd 7 – 5741 TP Beek en Donk
P.O. Box 140 – 5740 AC Beek en Donk
Phone +31 492 502-900
Fax +31 492 502-950
verkoop@nl.ebmpapst.com
www.ebmpapst.nl

- Österreich

ebm-papst Motoren & Ventilatoren GmbH Straubingstraße 17 4030 Linz Phone +43 732 321150-0 Fax +43 732 321150-20 info@at.ebmpapst.com www.ebmpapst.at

Russland

ebm-papst Rus GmbH Olimpiyskiy prospect 29A, office 418 141006 Mytistschi, Oblast Moskau Phone +7 495 9807524 Fax +7 795 5140924 info@ebmpapst.ru www.ebmpapst.ru

- Schweden

ebm-papst AB Äggelundavägen 2 17562 Järfälla Phone +46 10 4544400 Fax +46 8 362306 info@ebmpapst.se www.ebmpapst.se

- Schweiz

ebm-papst AG Rütisbergstraße 1t 8156 Oberhasli Phone +47 44 73220-70 Fax +41 44 73220-77 verkauf@ebmpapst.ch www.ebmpapst.ch

Amerika

- USA

ebm-papst Inc. P.O. Box 4009 100 Hyde Road Farmington, CT 06034 UNITED STATES Phone +1 860 674-1515 Fax +1 860 674-8536 sales@us.ebmpapst.com www.ebmpapst.us

Asien

China

ebm-papst Ventilator (Shanghai) Co., Ltd No. 418, Huajing Road WaiGaoQiao Free Trade Zone 200131 Shanghai Phone +86 21 5046-0183 Fax +86 21 5046-1119 sales@cn.ebmpapst.com www.ebmpapst.com.cn

- Indien

ebm-papst India Pvt. Ltd. 26/3, G.N.T. Road Erukkencherry 600 118 Chennai Phone +91 44 26720103 Fax +91 44 25371149 sales@in.ebmpapst.com www.ebmpapst.in

◄ Motorenspezialist

- ■ Motorenvertretung

www.ebmpapst.com37964-7-8811 · 2019-11 · WA-1 ·

Printed in Germany

ebmpapst

the engineer's choice

ebm-papst St. Georgen GmbH & Co. KG Hauptverwaltung

Hermann-Papst-Straße 1 78112 St. Georgen GERMANY Phone +49 7724 81-0 Fax +49 7724 81-1309 info2@de.ebmpapst.com ebm-papst St. Georgen GmbH & Co. KG Werk 7 Lauf

Industriestraße 9
91207 Lauf a. d. Pegnitz
GERMANY
Phone +49 9123 945-0
Fax +49 9123 945-145
info4@de.ebmpapst.com